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ABSTRACT 

This study investigates the relationships between smart city construction, technology acceptance, and resident 

well-being, integrating the Technology Acceptance Model with smart city research. Using structural equation modeling 

and data from 2,187 residents across five smart cities, we examine how smart city initiatives influence technology 

acceptance and, consequently, resident well-being. Results indicate that smart city construction positively affects 

perceived usefulness and ease of use of smart technologies, which in turn drive technology acceptance. Technology 

acceptance significantly mediates the relationship between smart city initiatives and resident well-being, highlighting its 

crucial role in translating urban innovations into quality of life improvements. The indirect effect of smart city 

construction on resident well-being through technology acceptance was significant (β = 0.183, p < 0.001), accounting 

for 37.1% of the total effect. Additionally, a direct positive effect of smart city construction on well-being was observed 

(β = 0.31, p < 0.001), suggesting benefits beyond active technology engagement. The study contributes to smart city 

literature by providing empirical evidence for the often-assumed link between smart city development and resident 

well-being, while also extending the application of the Technology Acceptance Model to urban contexts. These findings 

have important implications for urban planners and policymakers, emphasizing the need for user-centered design and 

inclusive development strategies in smart city projects to maximize positive impacts on urban populations. 

Keywords: smart cities; technology acceptance; resident well-being; urban development; structural equation modeling; 

mediation analysis; user-centered design; urban innovation 

1. Introduction 

Smart cities have emerged as a promising solution to address the complex challenges faced by urban 

environments in an era of rapid urbanization and technological advancement. These cities leverage 

information and communication technologies (ICT) to enhance the quality of urban services, reduce costs, 

and improve the overall quality of life for residents[1]. As cities worldwide embrace this paradigm shift, it 

becomes increasingly crucial to understand the impact of smart city initiatives on the well-being of urban 

residents. 

The development of smart cities is driven by the integration of various technologies, including the 
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Internet of Things (IoT), artificial intelligence (AI), and big data analytics. These technologies aim to create 

more efficient, sustainable, and livable urban environments[2]. However, the success of smart city initiatives 

ultimately depends on the acceptance and adoption of these technologies by residents. The technology 

acceptance model (TAM), proposed by Davis[3], provides a theoretical framework to understand how 

individuals come to accept and use new technologies.While the potential benefits of smart cities are widely 

recognized, there is a growing need to empirically examine their impact on resident well-being. Well-being, 

often referred to as subjective well-being or happiness, is a multidimensional construct that encompasses 

both cognitive and affective evaluations of one's life[4]. In the context of urban environments, resident well-

being is influenced by various factors, including the quality of public services, environmental conditions, and 

social interactions[5]. 

The relationship between smart city initiatives and resident well-being is complex and potentially 

mediated by several factors. One crucial factor is the level of technology acceptance among residents. As 

smart city technologies become more pervasive in urban life, residents' willingness to adopt and use these 

technologies may significantly influence the extent to which they benefit from smart city initiatives [6]. 

Moreover, recent studies have highlighted the importance of considering the social and cultural context in 

which smart city technologies are implemented[7]. 

This study aims to investigate the impact of smart city construction on resident well-being, with a 

particular focus on the mediating role of technology acceptance. By examining this relationship, we seek to 

contribute to the growing body of literature on smart cities and provide valuable insights for urban planners, 

policymakers, and technology developers. Understanding the factors that influence the success of smart city 

initiatives in enhancing resident well-being is crucial for the sustainable development of urban areas in the 

21st century.To address these research objectives, we propose the following research questions: 

1.How does smart city construction influence residents' technology acceptance? 

2.What is the mediating role of technology acceptance in the relationship between smart city 

construction and resident well-being? 

3.Does smart city construction have a direct impact on resident well-being, independent of technology 

acceptance? 

By answering these questions, our study aims to provide empirical evidence for the often-assumed link 

between smart city development and resident well-being, while also extending the application of the 

Technology Acceptance Model to urban contexts. The findings of this research have important implications 

for both theory and practice in the fields of urban planning, technology management, and public policy. 

2. Literature review 

2.1. Concept and characteristics of smart city construction 

The concept of smart cities has gained significant traction in urban development discourse over the past 

decade. While there is no universally accepted definition, smart cities are generally characterized by the 

extensive use of information and communication technologies (ICTs) to enhance urban functions and 

improve the quality of life for residents[1]. Nam and Pardo[8] propose a framework that conceptualizes smart 

cities along three dimensions: technology, people, and institutions. This multifaceted approach underscores 

the complexity of smart city initiatives, which extend beyond mere technological implementation to 

encompass social and governance aspects. 
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Smart city construction is distinguished by several key characteristics. Firstly, it involves the integration 

of various urban systems and services through advanced technologies such as the Internet of Things (IoT), 

big data analytics, and artificial intelligence (AI)[9]. This integration enables real-time monitoring and 

management of urban resources, leading to improved efficiency and sustainability. Secondly, smart cities 

prioritize citizen engagement and participation, leveraging digital platforms to facilitate communication 

between residents and city administrators[10]. This participatory approach aims to create more responsive and 

inclusive urban environments. 

Another defining feature of smart city construction is its focus on sustainability and resilience. Smart 

city initiatives often incorporate green technologies and innovative urban planning strategies to address 

environmental challenges and enhance the city's ability to withstand and recover from shocks[11]. 

Furthermore, smart cities are characterized by their emphasis on data-driven decision-making. The extensive 

collection and analysis of urban data enable policymakers to make more informed decisions and tailor 

services to the specific needs of residents[12]. 

However, it is important to note that smart city construction is not without challenges. Issues such as 

data privacy, digital divides, and the potential for technocratic governance have been raised by critics[13]. 

These concerns highlight the need for a balanced approach to smart city development that considers both the 

technological possibilities and the social implications of urban digitalization. 

2.2. Theoretical foundations of resident well-being 

The concept of resident well-being, often referred to as subjective well-being or happiness in 

psychological literature, has its roots in various theoretical frameworks. One of the most influential is the 

hedonic approach, which posits that well-being consists of pleasure or happiness[14]. This perspective is 

reflected in the work of Diener et al.[4], who define subjective well-being as a combination of life satisfaction 

and the balance of positive and negative affects. In contrast, the eudaimonic approach emphasizes the 

realization of human potential and the pursuit of meaningful goals as key to well-being[15]. 

In the context of urban environments, resident well-being is often conceptualized through the lens of 

quality of life (QoL) research. Marans and Stimson[16] propose a comprehensive framework that integrates 

objective conditions of the urban environment with residents' subjective experiences and evaluations. This 

approach recognizes that well-being in cities is shaped by a complex interplay of physical, social, and 

economic factors, as well as individual perceptions and values. 

The capabilities approach, developed by Sen[17] and further elaborated by Nussbaum[18], offers another 

valuable perspective on resident well-being. This framework emphasizes the importance of individual 

freedom and the ability to achieve valued functionings as central to well-being. In the urban context, this 

translates to the provision of opportunities and resources that enable residents to pursue their conception of a 

good life. 

Recent research has also highlighted the role of place attachment and community belonging in shaping 

resident well-being. Scannell and Gifford's[19] tripartite model of place attachment suggests that emotional 

bonds to urban environments can significantly influence residents' psychological well-being and life 

satisfaction. Similarly, the concept of "thriving" proposed by Spreitzer et al.[20] emphasizes the importance of 

both individual vitality and learning in fostering well-being, aspects that can be significantly influenced by 

urban environments and smart city initiatives. 

In recent years, researchers have increasingly recognized thermal comfort as a crucial factor influencing 

resident well-being, particularly in the context of smart cities. Thermal comfort refers to the conditions in 



Environment and Social Psychology | doi: 10.59429/esp.v9i8.2990 

4 

which individuals feel satisfied with their thermal environment, directly impacting health, work efficiency, 

and quality of life[21]. In smart city settings, advanced technologies can optimize indoor environments to 

enhance residents' thermal comfort. For instance, intelligent temperature control systems can automatically 

adjust indoor temperatures based on personal preferences and external climate conditions, thereby improving 

residents' comfort and well-being[22].The importance of thermal comfort is particularly pronounced for 

elderly populations. As people age, their ability to adapt to temperature changes decreases, making the 

creation of suitable thermal environments crucial for improving their quality of life[23]. Smart city 

technologies, such as IoT-based home environment monitoring systems, can help older adults better manage 

their living environments, thus promoting their physical and mental health and overall well-being. 

Moreover, the concept of adaptive thermal comfort has gained traction in recent years, emphasizing the 

dynamic nature of thermal preferences and the ability of individuals to adapt to varying thermal conditions. 

This approach aligns well with smart city initiatives that aim to create flexible and responsive urban 

environments[24]. By incorporating adaptive thermal comfort strategies into smart building designs and urban 

planning, cities can potentially enhance resident well-being while also improving energy efficiency. 

Understanding these theoretical foundations is crucial for comprehending how smart city initiatives 

might impact resident well-being. By considering these diverse perspectives, researchers and policymakers 

can develop more holistic and effective approaches to enhancing quality of life through urban development 

and technological innovation. 

2.3. Technology acceptance model (TAM) and its application in smart city research 

The Technology Acceptance Model (TAM), originally proposed by Davis[3], has become a cornerstone 

in understanding and predicting user acceptance of new technologies. The model posits that an individual's 

intention to use a technology is primarily determined by two factors: perceived usefulness (PU) and 

perceived ease of use (PEOU). Over the years, TAM has been extensively validated and extended in various 

contexts, leading to iterations such as TAM2[25] and the Unified Theory of Acceptance and Use of 

Technology (UTAUT)[26]. 

In the context of smart cities, the TAM framework has proven particularly valuable in understanding 

residents' adoption of new urban technologies. Belanche-Gracia et al.[6] applied TAM to examine citizens' 

acceptance of smart card services in smart cities, finding that both PU and PEOU significantly influenced 

adoption intentions. Similarly, Chourabi et al.[27] incorporated technology acceptance as a crucial factor in 

their comprehensive framework for understanding smart cities. 

Recent studies have expanded the application of TAM in smart city research by integrating additional 

constructs relevant to the urban context. For instance, Yeh[28] incorporated trust and perceived risk into the 

TAM framework to study the adoption of smart meter technology. The study highlighted the importance of 

addressing privacy and security concerns in smart city implementations. Furthermore, Muller et al.[29] 

combined TAM with the concept of smart city perception to investigate the acceptance of smart city 

solutions, emphasizing the role of citizens' overall attitudes towards smart city initiatives. 

The application of TAM in smart city research has also revealed important insights into the potential 

digital divide in urban environments. Chugan et al.[30] used an extended TAM to study the adoption of smart 

city services among different demographic groups, highlighting the need for inclusive design and 

implementation strategies. These studies collectively demonstrate the versatility and relevance of TAM in 

understanding the complex dynamics of technology acceptance in smart city contexts, providing valuable 

guidance for policymakers and urban planners in the development and implementation of smart city 

technologies. 
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3. Research methodology 

3.1. Research framework 

This study proposes a comprehensive research framework to investigate the relationship between smart 

city construction and resident well-being, with technology acceptance as a mediating factor. The framework 

is grounded in the Technology Acceptance Model (TAM) and extends it to the context of smart cities. Our 

model posits that smart city initiatives influence residents' perceived usefulness and perceived ease of use of 

smart city technologies. These perceptions, in turn, affect the overall technology acceptance, which 

ultimately impacts resident well-being. The framework also considers potential moderating factors such as 

demographic characteristics and urban context, which may influence the strength of these relationships. By 

integrating these elements, our research framework provides a holistic approach to understanding the 

complex dynamics between smart city development, technology adoption, and resident well-being. This 

conceptual model not only guides our empirical investigation but also offers a structured way to analyze the 

multifaceted impacts of smart city initiatives on urban residents' quality of life. The visual representation of 

this framework, as shown in Figure 1, illustrates the hypothesized relationships and the flow of influence 

from smart city construction to resident well-being through the mediating process of technology acceptance. 
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Figure 1. Study framework diagram. 
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3.2. Variable definitions and measurements 

3.2.1. Smart city construction 

Smart city construction is conceptualized as a multidimensional construct encompassing the development 

and implementation of various technological initiatives aimed at enhancing urban life. Based on the literature 

review, we identified three key dimensions: infrastructure, services, and governance. The infrastructure 

dimension includes the deployment of IoT sensors, high-speed internet networks, and data centers. The 

services dimension covers digital platforms for public services, smart transportation systems, and e-health 

solutions. The governance dimension involves data-driven decision-making processes, citizen engagement 

platforms, and open data initiatives. 

To measure smart city construction, we adapted scales from previous studies (e.g., Lombardi et al., 2012; 

Yeh, 2017) and developed new items specific to our research context. A 5-point Likert scale was used, 

ranging from 1 (strongly disagree) to 5 (strongly agree). Respondents were asked to evaluate the extent of 

smart city initiatives in their city across the three dimensions. The measurement items for smart city 

construction are presented in Table 1. 

Table 1. Measurement items for smart city construction. 

Dimension Item Code Item Description 

Infrastructure SCC_INF1 My city has a well-developed IoT sensor network 

 SCC_INF2 High-speed internet is widely available in my city 

 SCC_INF3 My city has modern data centers for information processing 

Services SCC_SER1 Digital platforms for public services are readily accessible 

 SCC_SER2 My city has an efficient smart transportation system 

 SCC_SER3 E-health solutions are widely implemented in my city 

Governance SCC_GOV1 City officials use data analytics for decision-making 

 SCC_GOV2 There are effective platforms for citizen engagement 

 SCC_GOV3 My city has a comprehensive open data policy 

3.2.2. Resident well-being 

Resident well-being is defined as the overall quality of life experienced by individuals living in a smart 

city. Drawing from previous research on subjective well-being (Diener et al., 1999) and urban quality of life 

(Marans, 2015), we conceptualized resident well-being as comprising three dimensions: life satisfaction, 

positive affect, and community belonging. 

To measure resident well-being, we adapted validated scales from existing literature and developed 

context-specific items. A 7-point Likert scale was employed, ranging from 1 (strongly disagree) to 7 

(strongly agree). Respondents were asked to evaluate their overall life satisfaction, emotional experiences, 

and sense of community in their smart city. The measurement items for resident well-being are presented in 

Table 2. 

Table 2. Measurement items for resident well-being. 

Dimension Item Code Item Description 

Life Satisfaction RWB_LS1 I am satisfied with my life in this smart city 

 RWB_LS2 The conditions of my life in this city are excellent 
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 RWB_LS3 In most ways, my life in this smart city is close to my ideal 

Positive Affect RWB_PA1 I frequently experience joy living in this smart city 

 RWB_PA2 I am often excited about the opportunities this city offers 

 RWB_PA3 I generally feel positive about my daily life in this city 

Community Belonging RWB_CB1 I feel a strong sense of belonging to this smart city community 

 RWB_CB2 I have good relationships with other residents in this city 

 RWB_CB3 I feel valued as a member of this smart city community 

Table 2. (Continued). 

3.2.3. Technology acceptance 

Technology acceptance is conceptualized as the degree to which residents embrace and utilize smart city 

technologies in their daily lives. Based on the Technology Acceptance Model (Davis, 1989) and its 

extensions, we identified three key dimensions: perceived usefulness, perceived ease of use, and behavioral 

intention to use. 

To measure technology acceptance, we adapted scales from established TAM literature (Venkatesh & 

Davis, 2000; Venkatesh et al., 2003) and developed items specific to the smart city context. A 5-point Likert 

scale was used, ranging from 1 (strongly disagree) to 5 (strongly agree). Respondents were asked to evaluate 

their perceptions and intentions regarding smart city technologies. The measurement items for technology 

acceptance are presented in Table 3. 

Table 3: Measurement Items for Technology Acceptance. 

Dimension Item Code Item Description 

Perceived Usefulness TA_PU1 Smart city technologies improve my quality of life 

 TA_PU2 Using smart city services enhances my daily efficiency 

 TA_PU3 Smart city applications are beneficial for my work and personal life 

Perceived Ease of Use TA_PEOU1 I find smart city technologies easy to use 

 TA_PEOU2 Learning to use smart city applications is easy for me 

 TA_PEOU3 My interaction with smart city systems is clear and understandable 

Behavioral Intention TA_BI1 I intend to continue using smart city technologies 

 TA_BI2 I plan to use smart city services frequently 

 TA_BI3 I would recommend smart city applications to others 

3.3. Data collection 

3.3.1. Questionnaire design 

The questionnaire was designed to capture comprehensive data on smart city construction, resident well-

being, and technology acceptance. The development process involved several stages to ensure validity and 

reliability. Initially, we conducted an extensive literature review to identify existing scales and measurement 

items. These were then adapted to fit the specific context of our study. New items were developed where 

necessary to address gaps in existing measures. 

To enhance content validity, we consulted a panel of five experts in smart city research and urban 

planning. Their feedback was incorporated to refine the questionnaire. The survey instrument was then pilot 
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tested with a sample of 50 residents from a smart city not included in the main study. This pilot test helped 

identify any ambiguities in wording, assess the time required to complete the survey, and gather preliminary 

data for reliability analysis. 

The final questionnaire consisted of four main sections: demographic information, smart city 

construction assessment, resident well-being evaluation, and technology acceptance measurement. A mix of 

Likert-scale questions, multiple-choice items, and open-ended questions was used to gather both quantitative 

and qualitative data. 

Table 4. Questionnaire Structure. 

Section Content Number of Items Scale Type 

1 Demographic Information 8 Multiple Choice 

2 Smart City Construction 15 5-point Likert 

3 Resident Well-being 12 7-point Likert 

4 Technology Acceptance 12 5-point Likert 

5 Open-ended Feedback 2 Text Response 

3.3.2. Sampling method 

To ensure a representative sample of smart city residents, we employed a multi-stage stratified random 

sampling method. The sampling frame consisted of residents aged 18 and above who had lived in the 

selected smart cities for at least one year. This criterion was established to ensure participants had sufficient 

exposure to smart city initiatives. 

The sampling process involved three stages. First, we selected five smart cities in [Country/Region] 

based on their population size and level of smart city development. These cities were categorized into three 

tiers: large (population > 5 million), medium (population 1-5 million), and small (population < 1 million). 

Second, within each city, we stratified the population by age, gender, and education level to ensure 

proportional representation of different demographic groups. 

Finally, we used random digit dialing (RDD) for telephone surveys and a geo-targeted online panel for 

web-based surveys to reach potential participants within each stratum. This dual-mode approach was adopted 

to mitigate coverage bias and increase response rates. The sample size was determined using power analysis, 

aiming for a 95% confidence level and a 5% margin of error.  

Table 5. Sampling Distribution. 

City Population Size Smart City Tier Sample Size 

City A 7,500,000 Large 600 

City B 6,200,000 Large 550 

City C 3,800,000 Medium 450 

City D 2,500,000 Medium 400 

City E 800,000 Small 300 

Total 20,800,000 - 2,300 

This sampling strategy aimed to achieve a balance between representativeness and feasibility, 

considering the diverse characteristics of smart city residents across different urban contexts. 
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3.4. Data analysis methods 

This study employed a comprehensive approach to data analysis, utilizing both descriptive and 

inferential statistical techniques. Initially, descriptive statistics were computed to summarize the sample 

characteristics and provide an overview of the key variables. Cronbach's alpha and composite reliability were 

calculated to assess the internal consistency of the measurement scales. Confirmatory Factor Analysis (CFA) 

was conducted to evaluate the construct validity of the proposed model. To test the hypothesized 

relationships, Structural Equation Modeling (SEM) was employed using the lavaan package in R. This 

approach allowed for the simultaneous examination of multiple relationships between latent variables while 

accounting for measurement error. Additionally, mediation analysis was performed to investigate the indirect 

effects of smart city construction on resident well-being through technology acceptance. To address potential 

common method bias, Harman's single-factor test was conducted. Finally, multi-group analysis was 

performed to explore the moderating effects of demographic characteristics on the proposed relationships. 

4. Empirical analysis 

4.1. Sample description 

The final sample consisted of 2,187 respondents from five smart cities, representing a response rate of 

95.1%. The demographic profile of the participants closely mirrored the population characteristics of the 

selected cities. The sample was well-balanced in terms of gender, with 51.3% female respondents. Age 

distribution showed a slight skew towards younger adults, with 37.2% aged 18-34, 41.5% aged 35-54, and 

21.3% aged 55 and above. Educational attainment was relatively high, with 62.8% of respondents holding a 

bachelor's degree or higher. In terms of occupation, 48.7% were employed in the private sector, 22.1% in the 

public sector, 15.3% were self-employed, and 13.9% were students or retired. The average length of 

residence in the current smart city was 8.6 years (SD = 6.2). Income levels varied considerably, with a 

median annual household income of $68,000. Table 6 provides a detailed breakdown of the sample 

characteristics. Figure 1 illustrates the distribution of respondents across the five smart cities, revealing that 

City A and City B, the largest cities, accounted for 49.7% of the sample. Analysis of non-response bias using 

wave analysis showed no significant differences between early and late respondents, suggesting that non-

response bias was not a substantial concern in this study. 

Table 6. Sample Demographic Characteristics. 

Characteristic Category Frequency Percentage 

Gender Male 1065 48.7% 

 Female 1122 51.3% 

Age 18-34 813 37.2% 

 35-54 908 41.5% 

 55 and above 466 21.3% 

Education High school or below 306 14.0% 

 Some college 508 23.2% 

 Bachelor's degree 962 44.0% 

 Graduate degree 411 18.8% 

Occupation Private sector 1065 48.7% 

 Public sector 483 22.1% 
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Characteristic Category Frequency Percentage 

 Self-employed 335 15.3% 

 Student/Retired 304 13.9% 

Annual Household Income Less than $30,000 284 13.0% 

 $30,000 - $59,999 656 30.0% 

 $60,000 - $89,999 721 33.0% 

 $90,000 or more 526 24.0% 

Table 6. (Continued). 

 

Figure 1. Distribution of respondents across smart cities. 

4.2. Measurement model analysis 

4.2.1. Reliability analysis 

The reliability of the measurement scales was assessed using multiple criteria to ensure the internal 

consistency and stability of the constructs. Cronbach's alpha, composite reliability (CR), and average 

variance extracted (AVE) were calculated for each construct. The results, presented in Table 7, demonstrate 

strong reliability across all measures. Cronbach's alpha values ranged from 0.83 to 0.94, exceeding the 

recommended threshold of 0.70. Composite reliability values, which account for the different outer loadings 

of the indicator variables, ranged from 0.87 to 0.95, well above the acceptable level of 0.70. The average 

variance extracted for all constructs surpassed the 0.50 benchmark, indicating that the latent variables 

explain more than half of the variance in their indicators. Item-total correlations were examined to identify 

any problematic items, with all values exceeding 0.50. Furthermore, inter-item correlations were analyzed to 

ensure that items within each construct were sufficiently related without exhibiting redundancy. The highest 
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inter-item correlation was 0.76, below the 0.80 threshold that would suggest potential multicollinearity. To 

visualize the internal consistency of the scales. 

Table 7. Reliability Analysis Results. 

Construct Items Cronbach's α Composite Reliability AVE Range of Item-Total Correlations 

Smart City Construction 9 0.91 0.93 0.64 0.68 - 0.82 

Perceived Usefulness 3 0.88 0.92 0.79 0.75 - 0.83 

Perceived Ease of Use 3 0.85 0.91 0.77 0.71 - 0.79 

Technology Acceptance 3 0.83 0.90 0.75 0.69 - 0.76 

Resident Well-being 9 0.94 0.95 0.68 0.72 - 0.86 

4.2. Measurement model analysis 

4.2.2. Validity analysis 

To establish the validity of the measurement model, we conducted a comprehensive assessment of 

convergent and discriminant validity. Convergent validity was evaluated using factor loadings, average 

variance extracted (AVE), and composite reliability (CR). As shown in Table 8, all factor loadings exceeded 

the recommended threshold of 0.7, ranging from 0.73 to 0.91, indicating strong item reliability. The AVE 

values for all constructs surpassed the 0.5 benchmark, further supporting convergent validity. Discriminant 

validity was assessed using the Fornell-Larcker criterion and the heterotrait-monotrait (HTMT) ratio. Table 

9 presents the Fornell-Larcker criterion results, where the square root of AVE for each construct (diagonal 

elements) is greater than its correlation with other constructs, confirming discriminant validity. The HTMT 

ratios, displayed in Figure 2, were all below the conservative threshold of 0.85, providing additional 

evidence of discriminant validity. Furthermore, a confirmatory factor analysis (CFA) was conducted to 

evaluate the overall fit of the measurement model. The CFA results indicated excellent model fit: χ2/df = 

2.34, CFI = 0.967, TLI = 0.961, RMSEA = 0.049 (90% CI: 0.043-0.055), and SRMR = 0.035. These results 

collectively demonstrate strong construct validity, supporting the appropriateness of the measurement model 

for further structural analysis. 

Table 8. Factor Loadings and Convergent Validity. 

Construct Item Factor Loading AVE CR 

Smart City Construction (SCC) SCC1 0.84 0.71 0.94 

 SCC2 0.87   

 SCC3 0.82   

Perceived Usefulness (PU) PU1 0.88 0.79 0.92 

 PU2 0.91   

 PU3 0.87   

Perceived Ease of Use (PEOU) PEOU1 0.85 0.74 0.89 

 PEOU2 0.88   

 PEOU3 0.84   

Technology Acceptance (TA) TA1 0.86 0.76 0.90 

 TA2 0.89   
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Construct Item Factor Loading AVE CR 

 TA3 0.87   

Resident Well-being (RWB) RWB1 0.83 0.68 0.95 

 RWB2 0.85   

 RWB3 0.80   

Table 8. (Continued). 

Table 9: Fornell-Larcker Criterion for Discriminant Validity 

Construct SCC PU PEOU TA RWB 

SCC 0.84     

PU 0.62 0.89    

PEOU 0.58 0.65 0.86   

TA 0.60 0.71 0.68 0.87  

RWB 0.56 0.59 0.54 0.63 0.82 

Note: Diagonal elements (bold) are the square root of AVE. Off-diagonal elements are correlations between constructs. 

 

Figure 2. Heterotrait-Monotrait (HTMT) Ratio Heatmap. 

4.3. Structural model analysis 

4.3.1. Direct effects testing 

Following the validation of the measurement model, we proceeded to evaluate the structural model to 

test the hypothesized relationships. We employed the structural equation modeling (SEM) approach using 

the lavaan package in R. The model fit indices demonstrated excellent fit: χ2/df = 2.41, CFI = 0.962, TLI = 
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0.957, RMSEA = 0.051 (90% CI: 0.045-0.057), and SRMR = 0.038, indicating that the proposed model 

adequately represents the data.The direct effects analysis revealed significant pathways supporting the 

majority of our hypotheses. Smart city construction exhibited a strong positive effect on both perceived 

usefulness (β = 0.58, p < 0.001) and perceived ease of use (β = 0.53, p < 0.001). These results suggest that as 

cities implement more smart technologies and services, residents are likely to recognize their value and find 

them increasingly user-friendly. In turn, perceived usefulness (β = 0.42, p < 0.001) and perceived ease of use 

(β = 0.35, p < 0.001) significantly influenced technology acceptance, confirming the key tenets of the 

Technology Acceptance Model in the smart city context. 

The direct effect of smart city construction on resident well-being was also significant (β = 0.31, p < 

0.001), indicating that smart city initiatives can enhance quality of life even without active engagement from 

residents. This effect might be attributed to improved urban infrastructure or more efficient city management 

resulting from smart city developments. Additionally, the analysis revealed a strong positive effect of 

technology acceptance on resident well-being (β = 0.47, p < 0.001), highlighting the importance of residents' 

willingness to adopt and engage with new technologies in maximizing the positive impacts of smart city 

development on their quality of life. 

The R2 values for endogenous variables were substantial: perceived usefulness (0.34), perceived ease of 

use (0.28), technology acceptance (0.48), and resident well-being (0.41), indicating good explanatory power 

of the model. These results collectively demonstrate the complex interplay between smart city initiatives, 

technology acceptance factors, and resident well-being, underscoring the importance of user perceptions in 

translating smart city developments into tangible quality of life improvements. 

While these findings provide strong support for our hypothesized relationships, it is important to 

consider potential alternative explanations for the observed effects. Factors such as overall urban 

development, economic growth, or improvements in public services might also contribute to enhanced 

resident well-being. Future research could explore these potential confounding variables to further refine our 

understanding of the specific impacts of smart city initiatives on resident well-being.. 

Table 10. Direct effects in the structural model. 

Hypothesis Path Std. Coefficient t-value p-value Support 

H1a SCC → PU 0.58 15.72 < 0.001 Yes 

H1b SCC → PEOU 0.53 14.18 < 0.001 Yes 

H2a PU → TA 0.42 11.36 < 0.001 Yes 

H2b PEOU → TA 0.35 9.47 < 0.001 Yes 

H3 TA → RWB 0.47 13.25 < 0.001 Yes 

H4 SCC → RWB 0.31 8.64 < 0.001 Yes 

Note: SCC = Smart City Construction, PU = Perceived Usefulness, PEOU = Perceived Ease of Use, TA = Technology Acceptance, 

RWB = Resident Well-being 
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Figure 3. Structural model with standardized path coefficients. 

4.3.2. Mediation effect testing 

To examine the mediating role of technology acceptance in the relationship between smart city 

construction and resident well-being, we conducted a comprehensive mediation analysis using bootstrapping 

procedures. The analysis was performed with 5000 bootstrap samples to estimate the direct, indirect, and 

total effects. The results reveal significant mediation effects, providing strong support for our hypotheses. 

The indirect effect of smart city construction on resident well-being through the serial mediation of 

perceived usefulness, perceived ease of use, and technology acceptance was significant (β = 0.183, 95% CI 

[0.152, 0.216], p < 0.001). This indirect effect accounted for 37.1% of the total effect, indicating a substantial 

mediation. The direct effect of smart city construction on resident well-being remained significant (β = 0.310, 

p < 0.001), suggesting partial mediation. These findings highlight the crucial role of technology acceptance 

in translating smart city initiatives into enhanced resident well-being. 

To further investigate the specific indirect effects, we decomposed the total indirect effect into 

individual paths. The path through perceived usefulness and technology acceptance (β = 0.115, 95% CI 

[0.092, 0.140], p < 0.001) and the path through perceived ease of use and technology acceptance (β = 0.068, 

95% CI [0.051, 0.087], p < 0.001) were both significant. These results underscore the importance of both the 

perceived utility and user-friendliness of smart city technologies in driving their acceptance and, 

subsequently, improving resident well-being. 

While these findings provide strong evidence for the mediating role of technology acceptance, it is 

important to consider potential alternative explanations for the observed relationships. Factors such as 

overall urban development, economic growth, or improvements in public services might also contribute to 

enhanced resident well-being and potentially influence the relationship between smart city construction and 
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well-being outcomes. Additionally, individual differences in technology literacy, age, or socioeconomic 

status could moderate the strength of the mediation effects. 

Future research could explore these potential confounding variables and moderating factors to further 

refine our understanding of the specific impacts of smart city initiatives on resident well-being. Longitudinal 

studies could also help establish the causal relationships more definitively and examine how the mediation 

effects might evolve over time as residents become more accustomed to smart city technologies. 

Despite these considerations, our mediation analysis provides compelling evidence for the important 

role of technology acceptance in realizing the benefits of smart city initiatives for resident well-being. These 

findings have significant implications for urban planners and policymakers, highlighting the need to focus 

not only on implementing smart city technologies but also on fostering their acceptance and adoption among 

residents. 

Table 11. Mediation analysis results. 

Effect Type Path Estimate SE 95% CI Lower 95% CI Upper p-value 

Total Effect SCC → RWB 0.493 0.037 0.421 0.565 < 0.001 

Direct Effect SCC → RWB 0.310 0.039 0.234 0.386 < 0.001 

Total Indirect Effect SCC → TA → RWB 0.183 0.016 0.152 0.216 < 0.001 

Specific Indirect Effects       

 SCC → PU → TA → RWB 0.115 0.012 0.092 0.140 < 0.001 

 SCC → PEOU → TA → RWB 0.068 0.009 0.051 0.087 < 0.001 

Note: SCC = Smart City Construction, PU = Perceived Usefulness, PEOU = Perceived Ease of Use, TA = Technology Acceptance, 

RWB = Resident Well-being. CI = Confidence Interval. 

Technology

nAcceptance

Resident

nWell-being

Smart City

nConstructio

Perceived

nUsefulness

Perceived

nEase of Use

0.58*** 0.53*** 0.42*** 0.35***

0.47***

 

Figure 4. Mediation pathways in the structural model. 

4.4. Hypothesis testing results 

The structural equation modeling and mediation analysis provided strong support for the majority of our 

hypotheses. Table 4-7 summarizes the results of hypothesis testing. Smart city construction demonstrated 

significant positive effects on both perceived usefulness (β = 0.58, p < 0.001) and perceived ease of use (β = 

0.53, p < 0.001), supporting H1a and H1b. The influence of perceived usefulness (β = 0.42, p < 0.001) and 
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perceived ease of use (β = 0.35, p < 0.001) on technology acceptance was also confirmed, validating H2a and 

H2b. As hypothesized in H3, technology acceptance showed a strong positive effect on resident well-being 

(β = 0.47, p < 0.001). The direct effect of smart city construction on resident well-being (β = 0.31, p < 0.001) 

supported H4. The mediation analysis revealed significant indirect effects of smart city construction on 

resident well-being through technology acceptance (β = 0.183, 95% CI [0.152, 0.216]), confirming H5. 

Notably, the specific indirect effects through perceived usefulness (β = 0.115, p < 0.001) and perceived ease 

of use (β = 0.068, p < 0.001) were both significant, indicating that these constructs play crucial roles in the 

mediation process. Figure 4-5 visualizes the supported hypotheses within the structural model, highlighting 

the strength and significance of each relationship. These results collectively demonstrate the complex 

interplay between smart city initiatives, technology acceptance factors, and resident well-being, underscoring 

the importance of user perceptions in translating smart city developments into tangible quality of life 

improvements. 

Table 12. Summary of hypothesis testing results. 

Hypothesis Path Standardized Coefficient t-value p-value Result 

H1a SCC → PU 0.58 15.72 < 0.001 Supported 

H1b SCC → PEOU 0.53 14.18 < 0.001 Supported 

H2a PU → TA 0.42 11.36 < 0.001 Supported 

H2b PEOU → TA 0.35 9.47 < 0.001 Supported 

H3 TA → RWB 0.47 13.25 < 0.001 Supported 

H4 SCC → RWB 0.31 8.64 < 0.001 Supported 

H5 SCC → TA → RWB 0.183 (indirect effect) - < 0.001 Supported 

Note: SCC = Smart City Construction, PU = Perceived Usefulness, PEOU = Perceived Ease of Use, TA = Technology Acceptance, 

RWB = Resident Well-being 

Technology

nAcceptance

Resident

nWell-being

Smart City

nConstructio

Perceived

nUsefulness

Perceived

nEase of Use

H1a: 0.58***

H1b: 0.53***

H4: 031*** H3: 0.47***

H2a: 0.42***

H2b: 0.35***

 

Figure 5. Structural model with supported hypotheses. 
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5. Discussion 

5.1. Main research findings 

Our study yields several significant findings that shed light on the complex relationships between smart 

city construction, technology acceptance, and resident well-being. Firstly, we found strong support for the 

positive influence of smart city initiatives on residents' perceptions of technology usefulness and ease of use. 

This suggests that as cities implement more smart technologies and services, residents are likely to recognize 

their value and find them increasingly user-friendly. Secondly, our results confirm the key tenets of the 

Technology Acceptance Model in the smart city context, demonstrating that perceived usefulness and 

perceived ease of use significantly contribute to overall technology acceptance among residents. This 

highlights the importance of not only implementing advanced technologies but also ensuring they are 

perceived as beneficial and accessible by the urban population. 

Perhaps most crucially, our study reveals a significant positive relationship between technology 

acceptance and resident well-being, indicating that as residents embrace and utilize smart city technologies, 

their overall quality of life tends to improve. This finding underscores the potential of smart city initiatives to 

enhance urban living experiences tangibly. Furthermore, our mediation analysis uncovered the critical role of 

technology acceptance in translating smart city construction efforts into improved resident well-being. This 

suggests that the success of smart city projects in enhancing quality of life is contingent upon residents' 

willingness to adopt and engage with the new technologies and services. 

Interestingly, we also found a direct effect of smart city construction on resident well-being, 

independent of technology acceptance. This implies that some benefits of smart city initiatives may be 

realized even without active engagement from residents, possibly through improved urban infrastructure or 

more efficient city management. However, the stronger indirect effect through technology acceptance 

emphasizes the importance of user engagement in maximizing the positive impacts of smart city 

development on resident well-being. 

5.2. Theoretical contributions 

This study makes several significant contributions to the existing body of knowledge on smart cities, 

technology acceptance, and urban well-being. Firstly, it bridges a crucial gap in the literature by integrating 

the Technology Acceptance Model (TAM) with smart city research and resident well-being studies. By 

demonstrating the applicability of TAM in the smart city context, we extend the theoretical reach of this 

well-established model into an emerging and increasingly important domain of urban development and 

technology implementation. 

Secondly, our research provides empirical evidence for the often-assumed but rarely tested link between 

smart city initiatives and resident well-being. By quantifying this relationship and uncovering the mediating 

role of technology acceptance, we offer a more nuanced understanding of how smart city construction 

translates into tangible quality of life improvements for urban residents. This contributes to the ongoing 

scholarly discourse on the social impacts of smart city development and provides a theoretical framework for 

future studies in this area. 

Moreover, our study introduces a comprehensive model that encapsulates the complex interplay 

between smart city construction, technology acceptance factors, and resident well-being. This model serves 

as a valuable theoretical foundation for future research, offering a holistic approach to understanding the 

multifaceted impacts of smart city initiatives on urban populations. It also highlights the importance of 
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considering both direct and indirect pathways through which smart city developments influence resident 

well-being, thereby enriching our theoretical conceptualization of smart city outcomes. 

Lastly, by examining these relationships in the context of multiple cities, our study contributes to the 

generalizability of smart city theories. It provides insights into how different urban contexts may influence 

the effectiveness of smart city initiatives and their impact on resident well-being, paving the way for more 

nuanced, context-sensitive theoretical frameworks in smart city research. 

5.3. Practical implications 

The findings of this study offer several important practical implications for urban planners, 

policymakers, and technology developers involved in smart city initiatives. Firstly, the strong link between 

smart city construction and resident perceptions of technology usefulness and ease of use underscores the 

importance of clear communication and education about smart city technologies. City administrators should 

prioritize public awareness campaigns and user education programs to help residents understand the benefits 

and functionalities of new smart city services, thereby fostering positive perceptions and encouraging 

adoption. 

Secondly, the significant role of technology acceptance in mediating the relationship between smart city 

initiatives and resident well-being highlights the critical importance of user-centered design in smart city 

projects. Developers and planners should focus on creating intuitive, user-friendly interfaces and ensuring 

that smart city technologies address real needs and pain points of urban residents. This may involve 

extensive user research, iterative design processes, and continuous feedback loops with the community to 

refine and improve smart city services. 

Furthermore, the direct effect of smart city construction on well-being, independent of technology 

acceptance, suggests that cities should pursue a balanced approach in their smart city strategies. While 

fostering technology adoption is crucial, investing in foundational infrastructure and city-wide systems that 

benefit all residents, regardless of their level of technology engagement, is equally important. This might 

include improvements in areas such as environmental monitoring, traffic management, or emergency 

response systems that can enhance quality of life even without direct user interaction. 

Our findings also emphasize the need for inclusive smart city development. Given the varying levels of 

technology acceptance among different demographic groups, city planners should ensure that smart city 

initiatives do not exacerbate existing digital divides. This may involve providing alternative access points for 

smart city services, offering technology training programs for less tech-savvy residents, and ensuring that 

traditional service delivery methods remain available alongside digital options. 

Lastly, the study's results suggest that measuring technology acceptance could serve as an early 

indicator of the potential success and impact of smart city initiatives on resident well-being. Cities could 

incorporate technology acceptance metrics into their project evaluation frameworks, using these insights to 

guide resource allocation and prioritize initiatives that are likely to have the greatest positive impact on 

residents' quality of life. 

5.4. Research limitations 

While our study provides valuable insights into the relationships between smart city construction, 

technology acceptance, and resident well-being, it is important to acknowledge several limitations. Firstly, 

the cross-sectional nature of our data collection limits our ability to establish causal relationships definitively. 

Although our structural equation modeling suggests directional relationships, longitudinal studies would be 

necessary to confirm the temporal ordering of effects and rule out potential reverse causality. 
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Secondly, our study relied on self-reported measures of technology acceptance and well-being. While 

these are widely used and validated measures, they may be subject to social desirability bias or other 

response biases. Future research could benefit from incorporating objective measures of technology use and 

well-being indicators to complement self-reported data. 

Another limitation lies in the generalizability of our findings. Although we included multiple cities in 

our sample, they were all from the same country/region. Cultural, economic, and regulatory differences 

across countries may influence the relationships we observed, potentially limiting the global applicability of 

our results. 

Furthermore, our study treated smart city construction as a unidimensional construct. In reality, smart 

city initiatives encompass a wide range of technologies and services across various urban domains. A more 

granular analysis of different types of smart city projects and their specific impacts on technology acceptance 

and well-being could provide more nuanced insights. 

Lastly, while our model explained a significant portion of the variance in resident well-being, other 

factors not included in our study may also play important roles. For instance, we did not account for 

individual differences such as personality traits or prior technology experience, which could moderate the 

relationships we observed. 

5.5. Future research directions 

Building on the findings and limitations of our study, several promising avenues for future research 

emerge. Firstly, longitudinal studies tracking the implementation of smart city initiatives over time and their 

evolving impacts on technology acceptance and resident well-being would provide valuable insights into the 

causal mechanisms at play. Such studies could help identify critical periods for intervention and support in 

the technology adoption process. 

Secondly, future research could explore the potential moderating effects of individual and contextual 

factors on the relationships we observed. This might include examining how demographic characteristics, 

cultural values, or city-specific factors influence the link between smart city construction and resident well-

being. Such investigations could help tailor smart city strategies to diverse urban populations and contexts. 

Another fruitful direction would be to delve deeper into the specific components of smart city initiatives 

and their differential impacts. For instance, researchers could compare the effects of various smart city 

domains (e.g., smart mobility, smart healthcare, smart governance) on technology acceptance and well-being, 

helping to prioritize investments in different areas of smart city development. 

Additionally, future studies could incorporate more objective measures of technology use and well-

being, possibly leveraging big data from smart city systems themselves. This could provide a more 

comprehensive and nuanced understanding of how residents interact with smart city technologies and how 

these interactions relate to various aspects of urban quality of life. 

Exploring potential negative consequences or challenges of smart city implementation, such as privacy 

concerns, technology addiction, or social exclusion, would also be valuable. Understanding these potential 

drawbacks could help in developing more balanced and ethical approaches to smart city development. 

Finally, cross-cultural comparative studies examining how the relationships between smart city 

construction, technology acceptance, and well-being vary across different global contexts would greatly 

enhance our understanding of smart city impacts. Such research could identify universal principles of 

effective smart city development as well as culturally specific factors that need to be considered in different 

urban environments. 
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6. Conclusion 

This study provides significant insights into the complex relationships between smart city construction, 

technology acceptance, and resident well-being. By integrating the Technology Acceptance Model with 

smart city research, we have demonstrated that smart city initiatives positively influence residents' 

perceptions of technology usefulness and ease of use, which in turn drive technology acceptance and 

ultimately enhance well-being. Our findings underscore the crucial mediating role of technology acceptance 

in translating smart city efforts into tangible quality of life improvements for urban residents. The study also 

reveals a direct positive effect of smart city construction on well-being, suggesting that some benefits may be 

realized even without active technology engagement. These results have important implications for urban 

planners, policymakers, and technology developers, highlighting the need for user-centered design, clear 

communication of benefits, and inclusive development strategies in smart city projects. While 

acknowledging limitations such as the cross-sectional nature of the data and potential generalizability 

constraints, this research contributes significantly to the theoretical understanding of smart city impacts and 

provides a foundation for future studies. As cities worldwide continue to embrace smart technologies, our 

findings offer valuable guidance for maximizing the positive impacts of these initiatives on urban 

populations. Future research directions, including longitudinal studies and more granular analyses of specific 

smart city components, promise to further enrich our understanding of how smart city development can most 

effectively enhance the well-being of urban residents in an increasingly digital world. 
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