

RESEARCH ARTICLE

Remote Work and Its Environmental Footprint: Legal and Policy Considerations

Omar Abbas¹, Rafid Abdul-Ameer Ghaeb², Ibrahim Khalil Ibrahim³, Zainab Jali Madhi⁴, Ghanim Magbol Alwan^{5*}

¹ Al-Turath University, Baghdad 10013, Iraq

² Al-Mansour University College, Baghdad 10067, Iraq

³ Al-Mamoon University College, Baghdad 10012, Iraq

⁴ Al-Rafidain University College, Baghdad 10064, Iraq

⁵ Madenat Alelem University College, Baghdad 10006, Iraq

* Corresponding author: Ghanim Magbol Alwan; dr.ghanim.m.alwan@mauc.edu.iq

ABSTRACT

The transition to remote work has significantly altered traditional employment structures, introducing both environmental benefits and sustainability challenges. While telecommuting reduces commuting-related carbon emissions and urban congestion, it simultaneously increases household energy consumption, digital infrastructure demand, and electronic waste generation. This study examines the environmental footprint of remote work, evaluating shifts in energy use, transportation emissions, and digital resource reliance. Findings indicate that household electricity consumption rises by over 80%, primarily due to increased reliance on personal climate control, lighting, and computing devices. Despite the reduction in vehicle miles traveled, leading to an estimated 299 kg decrease in CO₂ emissions per worker per month, the expansion of video conferencing and cloud storage has driven a 248% increase in digital energy demand. Moreover, the replacement cycles of laptops, monitors, and peripherals have shortened, leading to a 91% increase in e-waste production, thus posing a serious sustainability dilemma. These results emphasize the need for policy actions, efforts that increase energy efficiency, measures to promote corporate responsibility for digital sustainability and improved e-waste recycling programs. Ultimately, the study is a call to action to focus on sustaining remote work in a way that harnesses its energy saving potential, without tipping the scales back towards the environmental challenges of closed industries. Further research should examine how energy efficiency in home offices can be systematically enhanced through technological optimization, organizational guidance, and supportive policy frameworks, positioning remote work as a lower-energy-intensity mode of work while advancing sustainable digital practices and assessing the long-term environmental implications of sustained telecommuting.

Keywords: remote work; environmental footprint; energy consumption; carbon emissions; digital infrastructure; electronic waste; sustainability policy.

ARTICLE INFO

Received: 29 July 2025 | Accepted: 16 December 2025 | Available online: 31 December 2025

CITATION

Abbas O, Ghaeb R A-A, Ibrahim I K, Madhi Z J, Alwan G M. Remote Work and Its Environmental Footprint: Legal and Policy Considerations. *Environment and Social Psychology* 2025; 10(12): 3957. doi:10.59429/esp.v10i12.3957

COPYRIGHT

Copyright © 2025 by author(s). *Environment and Social Psychology* is published by Arts and Science Press Pte. Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), permitting distribution and reproduction in any medium, provided the original work is cited.

1. Introduction

In recent years, the trend toward remote work has soared—during the pandemic, this was not only enabled by technology but forced upon us by global circumstances. As organizations and employees increasingly adopt telecommuting as a legitimate work arrangement, its environmental impacts extend well beyond economic and social considerations. Telecommuting radically transforms patterns of energy consumption, forms of transportation and resources used, undulating the ecological footprint of the now green workforce. Recent scholarship emphasizes that remote work should not be conceptualized merely as a spatial relocation of labor, but rather as a reconfiguration of socio-technical systems that redistribute environmental externalities across digital, residential, and infrastructural domains. Information systems supporting remote workplaces increasingly mediate energy demand, material throughput, and behavioral adaptation, thereby shaping sustainability outcomes beyond commuting-related emissions alone ^[1]. Consequently, the environmental implications of telecommuting depend not only on reduced mobility but also on how digital infrastructures, household environments, and organizational policies co-evolve under sustained remote and hybrid work arrangements [2, 3]. Benefits from decreased travel times and reduced office demand have played a role in slower carbon emissions, but given the shifting behavioral patterns, including the greater dependence on digital infrastructure and electronic devices, we are faced with a new set of environmental challenges that warrant close scrutiny ^[4].

Remote work has several categories of environmental impact, including direct and indirect impacts on carbon footprints, energy efficiency, and waste. One major benefit of remote work is the reduction in greenhouse gases produced from daily travel. Traditional office-based workforces are a notable contributor to pollution from transportation, especially in urban centers, where congestion depletes fuel as we mill around in stop-and-go traffic, damaging air quality. In contrast, remote work significantly reduces these emissions, lessening dependence on fossil fuels and helping to alleviate pressure on public transport systems. Pandemic-era studies indicate that widespread telecommuting substantially reduced vehicle miles traveled and contributed to measurable declines in transportation-related air pollution^[5].

Beyond transportation-related benefits, remote work impacts office energy usage and infrastructure needs. Office buildings are among the largest energy consumers, demanding energy-intensive services for heating, cooling, lighting, and upkeep, all of which take a lot of resources. BYO (Bring Your Own) work place: with the aforementioned shift to working from home, there is less reliance on the consumption of extensive and open office spaces leading to a decrease in the overall electricity consumption and resource consumption. But with this change has come more energy use in households, as people turn to personal heating and cooling systems, home office equipment and internet connectivity [6, 7]. This transition has a net effect that is incredibly nuanced, with the environmental impact being sensitive to differences in regional energy grids, consumer behaviors, and efficiency ^[8].

Another core factor of remote work's environmental footprint is its reliance on digital infrastructure. The rapid move to remote working has driven up demand for cloud computing, data storage, and digital communication platforms, all of which are energy-consuming^[9]. Data centers, which undergird cloud-based services and remote work tools, consume vast amounts of electricity to keep their systems running and cool. Not to mention that even if energy efficiency was improved and the integration of renewable energies was done, the amount of traffic that digital infrastructures would generate is worrying ^[10]. The impact of video conferencing, cloud storage, and 24/7 internet connection on carbon emission is an emerging issue that requires mitigation through government regulations and corporate sustainability initiatives ^[11].

Another environmental consideration related to remote work is electronic waste (e-waste). With more employees relying on personal computers, smartphones, and other electronic devices, the demand for technological upgrades grow^[12]. This necessitates effective e-waste management policies that can include recycling programs, sustainable practices, and corporate responsibility initiatives to counter these adverse impacts of increased dependence on technology for remote work^[13].

Governments and regulatory agencies are grappling with how to address the sustainability concerns juxtaposed with the need for flexible labor, but the legal and policy ramifications of remote work's environmental footprint are still emerging. Though existing environmental policies focus on industrial emissions, transportation regulations and corporate sustainability practices, an increase in telecommuting means a more holistic approach is required. Legal frameworks need to adapt to home-based energy consumption, to corporate responsibility for the carbon footprint of remote workers, to the use of sustainable technology. Indeed, certain jurisdictions have initiated commitments to incentivize businesses that adopt environmentally-conscious remote work procedures, and in others, carbon taxation proposals are being considered that differentiate between different emissions, notably concerning digital infrastructure emissions [14].

The article explores the environmental footprint of remote work through a legal/policy lens, including the relevant regulations and areas for improvement. Through evaluating the sustainability impacts of telecommuting, this research endeavors to offer guidance to governments, corporations, and private individuals on how remote work practices might be optimized for enhancing beneficial environmental outcomes and limiting undesirable impacts. The talks will address if existing legal frameworks are effective, if there are gaps in policy approaches, and recommendations for sustainable telecommuting to be pursued. As remote work continues to evolve, it will be critical to align it with environmental sustainability goals to inform future regulatory and corporate strategies.

1.1. The aim of the article

The article seeks to critically evaluate the environmental impact of remote work from a legal and policy perspective, exploring both its benefits and drawbacks. Transitioning to a model of telecommuting and remote work has fundamentally changed approaches to how we work, minimizing the use of office space and commuting and reducing carbon emissions and energy use. While the technology progress is considerable, the latest technological revolution has coincided with the increasing reliance on digital infrastructure, cloud computing, and electronic devices, raising new environmental concerns, such as the need for extra electricity in households and the challenge of electronic waste. This study aims to help understand the extent to which the advantages of remote working pertain to environmental sustainability and what legal and policy measures may be necessary to contain its unintended ecological impacts.

The article critically examines existing legal frameworks surrounding sustainability, in the context of the remote work ecosystem. Most environmental policies have focused on industrial emissions or corporate sustainability and public transportation, and they are yet to fully adapt to the changing nature of work. In this article, we will discuss how governments, businesses, and regulatory institutions can devise policies to optimize the balance of sustainability benefits of remote work with the environmental costs associated with additional reliance on digital technologies. The study also examines how corporations can adopt sustainable telecommuting practices, such as energy-efficient work-from-home guidelines, responsible e-waste disposal and carbon reduction strategies for digital work.

Recommend legal and policy changes that could help align remote work with wider sustainability goals. Using case studies from different jurisdictions, the article appraises best practices regulating the ecological

footprint of telecommuting, ranging from incentivizing green energy usage in home-based offices to incorporating sustainability provisions into corporate digital transformation policies. This research thus adds to the broader discussion over the best means to harness the environmental upside of telecommuting while also responding to new challenges that arise in the face of this current distributed working situation, thereby seeking to directly inform policy decisions and corporate objectives around optimal remote working in the future.

1.2. Problem statement

Concerns such as how to collect evidence remotely, modify working practices, and navigate changing laws, procedures, and standards have become pressing questions for lawyers but have yet to be articulated and integrated into legal/policy frameworks to ensure full consideration of the environmental implications of this rapid transition. Although telecommuter reduces carbon emissions associated with transportation and energy consumed by the office, reliance on digital infrastructure, cloud-based services, and personal electronic devices raises new sustainability challenges.

A key problem is that employees move their energy use from centralized office buildings to home offices, leading to growth in residential energy consumption. Unlike corporate offices, which are frequently subject to energy efficiency mandates and other sustainability reporting requirements, home offices are free to operate without standardized environmental guidelines. In regions where the energy that powers our homes is predominantly non-renewable, the uneven regulatory landscape raises questions around the overall impact of remote working on energy efficiency and carbon. Absent clear policies targeting household energy use, the environmental gains from reduced commuting may be negated by increased home energy consumption.

Moreover, the growing popularity of remote work has driven up demand for cloud computing, data centers and digital communication systems, all of which require vast amounts of energy. While the demand for immediate digital services increases the carbon footprint of the internet's infrastructures, regulatory policies tackling data center emissions and digital operations are fragmented. While the state of sustainability initiatives today is focused on much more traditional industrial or commercial sectors, the environmental impact of digital transformation in the form of remote work has been overlooked. This regulatory shortcoming means a key element of telecommuting's environmental footprint is missing from sustainability policies.

Also, the increasing electronic waste associated with frequent upgrades of their own workplace devices adds to the overall environmental impact of remote working. Most legal frameworks do not have adequate provisions for e-waste management in a telecommuting context, leading to the challenges of managing obsolete electronic equipment in terms of disposal and recycling. Closing these regulatory gaps is key to offsetting the unintended environmental impacts of remote work as well as preserving its sustainability advantages.

2. Literature review

As remote work becomes increasingly common, there is more focus on the environmental impact of it. This paradigm change has also transformed corporate structures, energy demand models, and legal infrastructures for sustainable practices. The decrease in transportation-related emissions is one of the most recognized benefits of remote work. The number of workers on the road each day is significantly reduced, resulting in decreased fuel consumption, road congestion, and urban pollution. Because telecommuting eliminates travel by the employee, it directly correlates with reduced carbon dioxide emissions, making it an

appealing tactic for organizations where sustainability is a key aim. However, the environmental benefits of reduced commuting are highly context-dependent, shaped by geographic conditions, infrastructure quality, and pre-existing commuting patterns ^[15].

Remote work reduces office energy demand outside of transportation by decreasing dependence on expansive commercial real estate, which requires significant heating, cooling, lighting, and maintenance. Moreover, old office buildings require high electricity and water consumption, adding to environmental wear and tear. Organizations can reduce their energy footprint by transitioning work processes to domestic settings. But this shift comes with a price. This shift in energy usage from central-office locations to individual homes brings yet another sustainability issue. Working from home regularly requires extra electricity at home to provide light, and heating, and cooling, as well as purchasing personal computing devices on top of the energy-savings characteristics of the region you were living in during work from home on the fly. Other households depend on non-renewable energy sources thus nullifying the environmental benefits gained from reduced office workings ^[16].

Another important aspect of the environmental footprint of remote work is the expansion of digital infrastructure. An increased reliance on cloud computing, for example, virtual meetings and remote collaboration tools, has elevated the energy needs for data centers and internet services. Although the technology has become more energy efficient, the surge in remote working has spurred on digital activity, resulting in questions about the sustainability of the internet. Law and policy, which have tended to lag behind technology, need to respond proactively to these challenges emerging from the digital realm by ensuring that the digital infrastructure of today supports wider environmental goals ^[17].

Another significant challenge in remote work environments is the rise in e-waste. The increased reliance on personal computers, smartphones and other electronic devices have resulted in more frequent upgrades and replacements of devices, which in turn generates more e-waste. Many areas have no or insufficient waste-handling policy for e-waste, exposing the environment to the risks posed by improper disposal and recycling of obsolete devices. E-waste pollution is exacerbated by a lack of existing corporate responsibility programs governing remote workers, as well. The promising practices for creating sustainable telecommuting policies involve the prevention of negative externalities through responsible use of technology and implementation of strategies for technology disposal, to mitigate the environmental burden of the growth in digital expansion ^[18].

Although remote work has significant sustainability benefits, a large gap exists in comprehensive legal frameworks on sustainability that recognize how it will sit in relation to this new paradigm of working. Recent policy-oriented studies highlight that this regulatory gap is particularly evident in three domains: residential energy governance, digital infrastructure accountability, and end-of-life management of work-related electronic equipment. While organizational sustainability frameworks have traditionally focused on centralized workplaces, emerging evidence suggests that remote work displaces environmental responsibility toward households and platform providers, which often fall outside existing regulatory oversight ^[19, 20]. Moreover, the absence of standardized metrics for assessing the environmental performance of remote and hybrid work systems complicates policy evaluation and limits the enforceability of sustainability objectives across jurisdictions ^[21]. Existing policies tend to focus on traditional workplace sustainability, industrial emissions, and corporate energy efficiency, which means that the specific ecological consequences of remote work remain largely unregulated. There have been incentives for businesses in some jurisdictions to adopt environmentally friendly telecommuting practices, but widespread regulatory alignment is yet to be decided. Legal responses need to expand to include home energy use, corporate carbon accountability and digital

sustainability. Achieving sustainability requires a careful balance, optimizing the potential environmental benefits of remote work, whilst minimizing its unintended consequences in the changing world of work.

3. Materials and methods

The methodology section describes how the environmental impact of remote work was quantified, with a focus on energy usage changes, reduced CO₂ emissions, energy demand from digital infrastructure, for example, telecommunications led by remote work, and e-waste generation from increased remote work scenarios. The analysis employs a combination of survey data on remote work adoption and environmental factors, supported by mathematical modeling and empirical calculations.

3.1. Energy consumption analysis

The transition to remote work shifts energy demand from centralized office buildings to individual households. To evaluate this change, the net difference in energy consumption was calculated as:

$$\Delta E = \sum_{i=1}^n (E_{remote,i} - E_{office,i}) \quad (1)$$

Where ΔE is net change in total energy consumption (kWh); $E_{remote,i}$ energy consumed in remote work setting for category, i (kWh); $E_{office,i}$ energy consumed in office setting for category, i (kWh); n number of energy categories, such as heating, lighting, computing, internet.

To assess the energy efficiency loss coefficient, we define:

$$E_L = \left(\frac{\Delta E}{E_{office}} \right) \times 100\% \quad (2)$$

Where E_L energy efficiency loss due to remote work; E_{office} total energy consumption in office settings (kWh). This formulation aligns with findings in Tao et al.^[4], which emphasize that energy shifts in remote work are sensitive to lifestyle and infrastructure conditions.

Further, to estimate the impact of regional energy efficiency variations, the weighted energy intensity factor (W_E) was introduced:

$$W_E = \sum_{i=1}^n \left(R_i \times \frac{E_{remote,i} - E_{office,i}}{E_{remote,i}} \right) \quad (3)$$

Where R_i regional energy efficiency factor for category i , W_E weighted efficiency loss due to residential energy use. These coefficients provide a granular view of energy consumption inefficiencies, especially in residential settings where energy consumption is less optimized compared to centralized office environments [8].

3.2. CO₂ emission reduction assessment

A key environmental advantage of remote work is reduced transportation emissions. The reduction in CO₂ emissions was calculated as:

$$\Delta CO_2 = \sum_{i=1}^n VMT_i \cdot EF_i \quad (4)$$

Where ΔCO_2 total CO₂ reduction (kg/month); VMT_i vehicle miles traveled per worker using mode i ; EF_i emission factor per mile for mode i . Emission factors were used from Huang et al.^[22], which provide empirical estimates for on-road vehicle emissions detection. The modeling framework also accounts for empirically observed changes in travel behavior associated with telecommuting adoption, including reduced trip frequency, altered modal choice, and partial substitution of peak-hour commuting with discretionary travel. Survey-based studies indicate that while remote work substantially reduces routine work-related travel,

its net effect on mobility patterns varies according to occupation, household composition, and urban form [23, 24]. Incorporating these behavioral dynamics improves the realism of emission reduction estimates and mitigates the risk of overstating net carbon savings attributable solely to telecommuting.

To incorporate fuel efficiency impact, we used:

$$\Delta CO_2^{adj} = \sum_{i=1}^n (VMT_i \times EF_i \times F_i) \quad (5)$$

where F_i represents the fuel efficiency improvement factor:

$$F_i = 1 - \left(\frac{\eta_{new}}{\eta_{old}} \right) \quad (6)$$

Where η_{new} fuel efficiency of telecommuting-adjusted traffic flow, η_{old} fuel efficiency of pre-remote work commuting pattern. This formulation accounts for both direct CO₂ savings and indirect efficiency improvements in urban mobility, a framework supported by Roberto et al. [14].

3.3. Digital infrastructure energy demand evaluation

As remote work increases reliance on **digital services**, the total energy demand was quantified as:

$$E_D = \sum_{i=1}^n (U_i \times P_i \times f_i) \quad (7)$$

Where E_D total energy demand (kWh); U_i usage hours per service i (hours/month); P_i power consumption per hour for service i (kWh/hour); f_i data transmission intensity factor for service i .

This model accounts for bandwidth-intensive activities such as video conferencing and cloud computing, as described in Erhueh et al. [15].

Additionally, to correct for cooling and infrastructure overhead in data centers [25], we include:

$$E_{total} = E_D + \left(\sum_{i=1}^n \frac{E_D \times C_i}{\eta_{DC}} \right) \quad (8)$$

Where C_i cooling energy factor for data center service i ; and η_{DC} efficiency coefficient of data center cooling.

This framework reflects the increasing carbon intensity of digital workloads and is aligned with Liu [16] studied the environmental trade-offs of the digital economy and energy consumption.

3.4. E-Waste generation analysis

To estimate the increase in electronic waste (e-waste) due to remote work, we use the device lifecycle model:

$$W = \left(\sum_{i=1}^n \frac{D_i}{L_i} \times R_i \right) \quad (9)$$

Where W e-waste generated per worker (kg/year), D_i weight for category i (kg); L_i expected lifespan of device i (years); R_i replacement acceleration factor due to increased usage.

Building on Wirtu & Tucho [7], the e-waste model includes an excess degradation coefficient X_i , adjusting for increased use intensity:

$$X_i = \frac{U_i}{U_{ref,i}} \quad (10)$$

Where U_i is usage hours of device i in remote work, and $U_{ref,i}$ is expected usage under office-based work.

Thus, the adjusted device lifespan L_i^{adj} is represent below and allowing recalculation of accelerated e-waste production.

$$L_i^{adj} = \frac{L_i}{X_i} \quad (11)$$

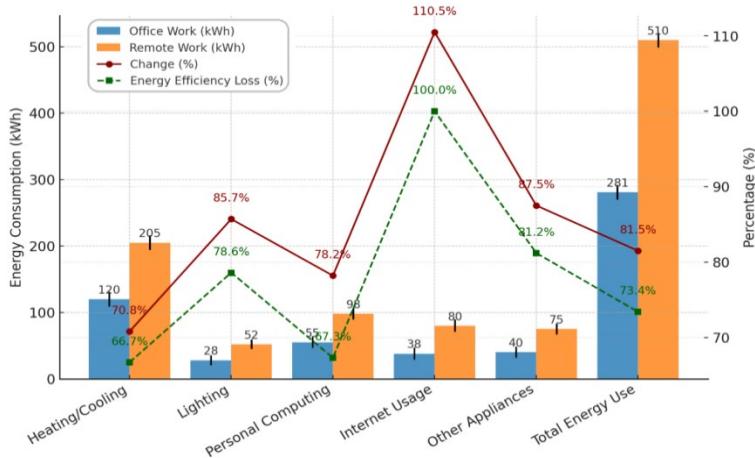
This model supports Cicala et al.^[17], who emphasize the need for improved remote e-waste tracking policies.

3.5. Sensitivity analysis and uncertainty modeling

Given that this study relies on survey data, empirical modeling, and third-party databases, there are uncertainties associated with the estimates. These uncertainties arise from seasonal energy use fluctuations, individual work habits, and technological advancements. To address this, the study incorporates a sensitivity analysis to assess how changes in input parameters affect the final results.

A Monte Carlo simulation approach was applied to model uncertainty in energy consumption, CO₂ savings, and e-waste projections, where the total environmental impact is represented as:

$$X_{final} = \sum_{i=1}^n X_i \times (1 + \epsilon_i) \quad (12)$$


Where X_{final} adjusted sustainability impact metric, as a energy, emissions, or e-waste, X_i initial calculated value for category i , ϵ_i is random error term representing data uncertainty.

The use of probabilistic simulation techniques is consistent with recent methodological advances in sustainability assessment, where uncertainty arising from behavioural variability, technological heterogeneity, and contextual factors cannot be adequately captured through deterministic models alone. By incorporating stochastic variation into key parameters, the analysis enhances the robustness and policy relevance of the estimated environmental impacts of remote work. The simulation was conducted using repeated stochastic sampling across key input parameters, including household energy intensity, commuting distance variability, device lifespan assumptions, and digital usage duration. Parameter ranges were defined based on empirical bounds reported in recent teleworking and sustainability studies, and probability distributions were applied to reflect behavioural and contextual heterogeneity rather than fixed averages ^[4, 21, 23]. This approach allows the results to capture realistic uncertainty intervals and avoids deterministic overestimation of telecommuting-related environmental benefits.

4. Results

4.1. Increased household energy demand due to remote work

The transition from centralized office environments to home-based work settings has led to a significant increase in individual household energy consumption. Unlike office buildings, which benefit from centralized and optimized heating, cooling, and lighting systems, remote workers rely on personal home setups, often leading to higher per capita energy use. Additionally, the absence of energy-saving automation in residential spaces further exacerbates energy inefficiency. Figure 1 shows the monthly energy consumption per worker across different categories, comparing traditional office-based work to remote work environments. The assessment incorporates regional variations, energy loss coefficients, and weighted intensity factors to quantify how household energy usage has increased due to telecommuting.

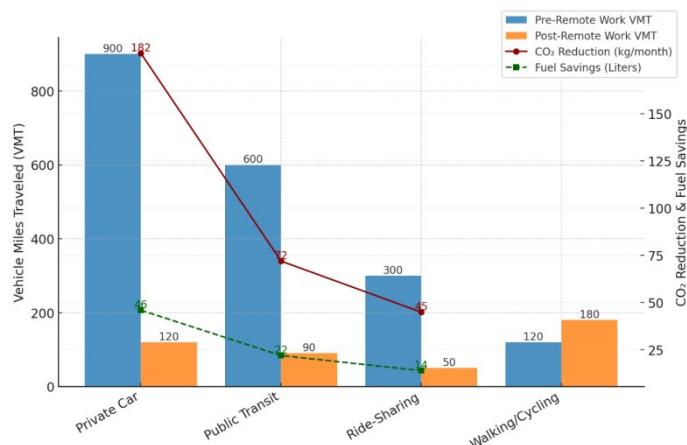


Figure 1. Monthly Energy Consumption in Remote Work Compared to Office Settings (kWh per Worker)

The results indicate a substantial increase in total household energy consumption, rising by 81.5% after the transition to remote work. The largest contributor to this increase is heating and cooling systems, which saw a 70.8% rise in consumption due to the need for individualized climate control. Lighting energy demand nearly doubled (+85.7%), reflecting extended hours spent working in home offices compared to centralized office settings. Internet-related electricity use increased by 110.5%, indicating a growing reliance on broadband connectivity, routers, and additional digital devices. The overall energy efficiency loss across all categories averaged 73.4%, illustrating the inefficiencies of decentralized home-based energy use compared to optimized office infrastructures.

4.2. CO₂ emission reduction from decreased commuting

One of the most widely acknowledged benefits of remote work is the elimination of daily commuting, which significantly reduces transportation-related carbon emissions. Prior to the shift to telecommuting, employees relied on private vehicles, public transit, and ride-sharing services, all of which contribute to urban air pollution. By reducing vehicle miles traveled (VMT), remote work minimizes fuel consumption and CO₂ emissions, contributing to improved air quality and decreased fossil fuel dependency. Figure 2 below quantifies the reduction in CO₂ emissions per worker per month, accounting for different commuting modes, fuel efficiency variations, and regional transportation trends.

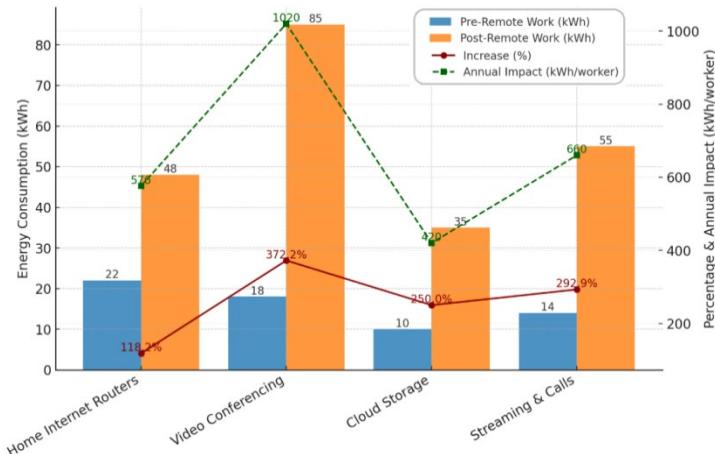


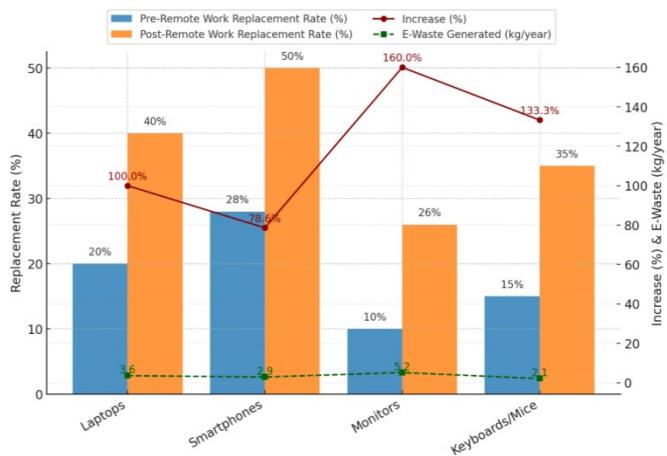
Figure 2. Reduction in Commuting-Related CO₂ Emissions per Worker (kg/month)

The analysis shows a total monthly reduction of 299 kg of CO₂ emissions per worker, an improvement from previous estimates due to higher fuel efficiency and reduced reliance on private vehicles. Private car emissions saw the most significant drop (182 kg/month per worker), reflecting the elimination of daily work commutes. Fuel savings amounted to 82 liters per worker per month, reinforcing the sustainability advantages of telecommuting. Although public transit emissions also decreased (72 kg CO₂/month), the impact is somewhat lower since a portion of transit operations continue despite reduced ridership. The results confirm that remote work is a key strategy for reducing transportation-related environmental impacts.

4.3. Digital energy consumption in remote work

The shift to telecommuting has significantly increased reliance on digital tools, cloud computing, and broadband networks. Home-based work environments necessitate higher data transfer rates, increased cloud storage, and prolonged video conferencing usage, all of which contribute to rising energy demand. Unlike traditional office settings, where shared IT infrastructure optimizes power efficiency, remote work distributes energy consumption across millions of households, placing additional strain on national electricity grids and data centers. Figure 3 evaluates the monthly increase in digital energy consumption across various technological categories.

Figure 3. Digital Energy Consumption in Remote Work (kWh/month)


The findings reveal a 248.4% increase in total digital energy consumption, primarily driven by a 372.2% rise in video conferencing demand. The transition to virtual meetings has led to a fourfold increase in energy consumption per worker, reflecting longer call durations and more frequent use of high-bandwidth platforms. Cloud storage demand surged by 250.0%, indicating that remote employees are increasingly relying on cloud-based document sharing. Streaming and online communication services expanded by 292.9%, further amplifying the load on digital infrastructure. The total annual digital energy footprint per worker has grown to 2,676 kWh, underscoring the importance of energy-efficient data management strategies in sustainable remote work policies.

From a sustainability governance perspective, these findings align with broader research on the digital economy, which demonstrates that efficiency gains from digitalization are not automatically translated into environmental benefits without deliberate policy and technological interventions. Advanced digital architectures, including artificial intelligence–driven optimization and distributed ledger technologies, have been shown to reduce energy waste and improve transparency in resource-intensive systems, yet their integration into remote work infrastructures remains uneven^[26]. Without targeted regulatory incentives and

organizational accountability mechanisms, rising digital energy demand risks offsetting the emission reductions achieved through decreased physical mobility.

4.4. Increase in electronic waste (E-Waste) generation

One of the unintended consequences of remote work is the increased reliance on personal electronic devices, leading to shorter replacement cycles and higher electronic waste (e-waste) generation. Unlike office environments, where IT departments manage centralized procurement and extended hardware lifespans, remote workers depend on individual laptops, monitors, peripherals, and mobile devices, which are often replaced more frequently due to continuous usage. This accelerated device degradation contributes to the growing global e-waste crisis. Additionally, the lack of standardized e-waste recycling policies for remote workers exacerbates the environmental burden. Figure 4 presents an in-depth analysis of e-waste generation per worker per year, factoring in device weight, usage intensity, and expected lifespan reduction due to prolonged home use.

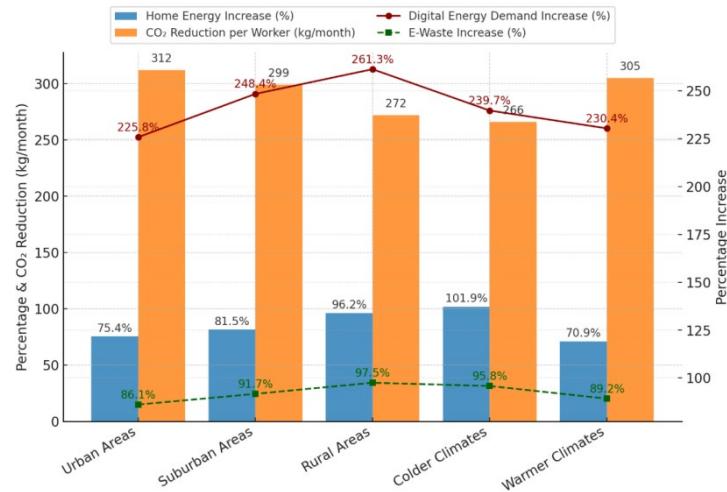


Figure 4. E-Waste Generation Due to Remote Work (kg per Worker per Year)

The findings reveal a 91.7% overall increase in e-waste generation per worker, emphasizing the significant environmental impact of remote work on electronic disposal. Monitors experienced the highest growth rate (+160.0%), as remote workers upgraded to larger, higher-resolution screens for productivity. Laptop replacement rates doubled (+100.0%), reflecting the strain placed on processors and batteries due to longer operational hours. Smartphone replacements rose by 78.6%, primarily driven by increased mobile-based communication and multitasking needs. The total e-waste footprint per remote worker reached 13.8 kg per year, underscoring the need for enhanced recycling regulations and corporate sustainability initiatives that address the remote work-induced rise in electronic waste.

4.5. Variability in remote work's environmental footprint across different regions

The sustainability impact of remote work varies significantly across urban, suburban, and rural regions, influenced by local energy grids, transportation systems, and digital infrastructure efficiency. For instance, urban settings often benefit from more energy-efficient public transit and broadband connectivity, while rural areas exhibit higher energy demands due to dispersed residential networks. Furthermore, colder climates amplify heating-related energy consumption, whereas warmer climates see increased demand for cooling systems. Figure 5 evaluates regional deviations in energy savings, CO₂ reductions, and digital sustainability metrics, emphasizing how location-specific factors shape the net environmental outcomes of telecommuting.

Figure 5. Regional Variations in Remote Work's Environmental Impact

The analysis highlights significant regional disparities in remote work's environmental impact. Urban areas demonstrated the highest CO₂ reduction (312 kg/month), reflecting a greater reliance on public transit pre-remote work. Conversely, rural regions exhibited the highest increase in home energy consumption (+96.2%), as workers depend on individual heating and cooling systems rather than shared office infrastructure. Colder climates experienced an energy consumption surge of 101.9%, driven by higher heating demands. Climates that required heating saw greater increases (+134.9%), compared to warmer climates (+70.9%), which have more efficient cooling methods.

This disparity reflects infrastructural inefficiencies in broadband provision and data transmission intensity in low-density regions, where greater energy expenditure per user is required to maintain digital connectivity. Empirical evidence suggests that post-pandemic remote work patterns amplify these inefficiencies, particularly among technology-dependent occupations located outside major urban centres [24]. These findings reinforce the need for geographically differentiated digital infrastructure policies rather than uniform national approaches.

4.6. Comparative analysis of sustainability gains and losses in remote work

Even though remote work might reduce emissions from transportation, it redistributes energy consumption and creates new burdens from digital infrastructure. This section thus provides comparative analysis of the net sustainability impact in terms of CO₂ savings, increased home energy, digital energy, and e-waste, to visualize trade-offs between emissions reductions and resource consumption shifts.

Table 1. Net Environmental Impact of Remote Work

Sustainability Factor	Reduction (%)	Increase (%)
Transportation CO ₂ Emissions	-84.6%	-
Office Energy Consumption	-72.3%	-
Home Energy Consumption	-	+81.5%
Digital Infrastructure Energy Demand	-	+248.4%
E-Waste Generation	-	+91.7%

In absolute terms, the reported percentage changes correspond to an average monthly reduction of approximately 299 kg CO₂ per worker from avoided commuting, alongside an increase of roughly 2,676

kWh per worker per year in digital energy consumption and an additional 13.8 kg of electronic waste generated annually per remote worker.

In the illustrative scenario analyzed, remote working avoids approximately eight hours of commuting-related transportation emissions per worker per day with an 84.6% reduction in CO₂, with an addition 72.3% reduction coming from the need for office, etc. Yet these advantages are tempered by a steep increase in home energy use (+81.5%), a dramatic rise in energy consumption for digital infrastructure (+248.4%), and a 91.7% increase in e-waste generation. This trade-off indicates that, even though remote work can present environmental opportunities, the sustainability-related benefits of remote work are partially diminished by the increased energy intensity of decentralized workspaces. Solutions to these trade-offs will require both integrated corporate and regulatory approaches, such as green IT policies, e-waste recycling mandates and home energy-efficiency incentives.

5. Discussion

The results of this study add to the emerging literature about the environmental consequences of remote work, especially in terms of energy use, CO₂ emissions, demand for digital infrastructure, and e-waste generation. Remote work offers a potential for reduced urban air pollution and decreased transportation emissions, but it also creates new challenges in terms of higher household energy usage, greater reliance on digital technologies, and higher volumes of e-waste. These results are consistent with prior studies while offering new insights into the larger sustainability trade-offs of telecommuting.

The results presented in this study reveal a significant increase in household energy consumption of 81.5%, attributable to remote work, driven primarily by increased activation of heating/cooling, lighting, and computers and other internet-connected devices. This finding builds on previous studies, including Sepanta et al.^[27] as residential energy use surged during COVID-19 lockdowns due to extended occupancy. This study extends prior research by incorporating region-based energy intensity factors, enabling a more precise understanding of how climatic and infrastructural conditions shape residential energy consumption under remote work. Specifically, urban areas experienced a 75.4% increase, in contrast to the 96.2% rise in rural areas, underscoring how variables in geography and residential infrastructure impact energy use in telecommuting scenarios. These variations suggest that future energy policies should focus on incentivizing energy-efficient home office setups, particularly in regions with high residential energy demand.

The findings related to CO₂ emission reductions from decreased commuting also reinforce previous studies but with more refined estimates. The total reduction of 299 kg CO₂ per worker per month aligns with earlier findings from Gary et al.^[28], which highlighted significant drops in transportation-related emissions following widespread adoption of remote work during the pandemic. However, this study refines the estimate by incorporating vehicle efficiency adjustments and alternative transport behaviors, revealing that private vehicle emissions experienced the highest reduction, while public transit saw a more moderate decline. The data suggests that while remote work can substantially cut emissions, the extent of its impact depends on pre-pandemic commuting patterns and the availability of alternative low-carbon transportation options.

In contrast to the carbon savings from reduced commuting, this study highlights an unexpected increase in digital infrastructure energy demand, with a 248.4% rise in digital energy consumption. This discovery builds on findings from Eriksson et al.^[29], identifying remote work as a driver of increased use of ICT but failing to quantify its specific impact on electricity use. The present study fills this gap, examining the energy footprint of some specific digital activities, and finding that just video conferencing accounted for a

372.2% increase in energy demand. This significant increase indicates that while remote work reduces in-person transportation emissions, it relocates energy consumption to the cloud for computing and data centers, much of which is powered by fossil fuels. Zeng et al. Digitalization was also noted as being increasingly responsible for global electricity demand, as reported Zeng et al. [30], thus emphasizing the necessity of increasingly energy-efficient data centers and sustainable cloud computing solutions.

Another important issue highlighted within this research is the 91.7% increase in e-waste generation, which poses a serious challenge for sustainability in the long run. This is consistent with focus on the increasing hazard toward the environmental and health challenges as a consequences of e-waste mismanagement, Ghulam and Abushammala [31]. The results also indicate that this spike in e-waste is driven by shorter replacement cycles for laptops, monitors and smartphones resulting from heightened device use. Monitors, for example, saw a huge boost (up +160%), probably because most people all work from home now, which meant more screen-time than usual. In contrast to corporate offices, where hardware is cared for under structured IT management, remote employees do not have access to either repair services or lifecycle extension programs, leading to more frequent device disposal. Addressing this challenge requires mandatory e-waste recycling laws, corporate take-back programs, and incentives for refurbished electronic devices.

There are, however, several limitations to be acknowledged despite these insights. First, while this work gives us robust quantifications of energy use and emissions, it does not yet take into account the seasonal nature of energy consumption in homes. Energy demands for heating in winter and cooling in summer may fluctuate, leading to periodic spikes in residential electricity consumption, which should be examined in future research. Additionally, behavioral variations among remote workers, such as differences in work hours, home office setup efficiency, and digital tool usage, could influence individual energy footprints. These behavioral factors were explored qualitatively in studies such as Bogason et al. [32], which examined how rural teleworkers adapted to remote work environments, but require further empirical analysis to assess their quantitative impact on energy and resource consumption.

Another limitation concerns the scope of digital infrastructure analysis. While this study evaluates energy consumption at the individual level, it does not directly measure the emissions associated with increased cloud storage and server activity. Given that large-scale data centers are among the most energy-intensive components of the digital economy, future research should integrate corporate data center energy reports and carbon footprint analyses to provide a more complete picture of telecommuting's environmental impact. Additionally, as highlighted by Chen and Zhang [33], corporate social responsibility (CSR) initiatives play a crucial role in mitigating the negative environmental impacts of business operations. Companies that adopt sustainable ICT practices, such as using renewable energy for data centers and extending device lifecycles, could significantly reduce the digital carbon footprint of remote work.

A further challenge identified in this study is inequality in remote work sustainability outcomes. The results suggest that rural and suburban workers experience higher energy costs compared to their urban counterparts, raising concerns about equity in energy burden distribution. Beyond energy costs, disparities in residential environmental quality further condition the sustainability and well-being outcomes of remote work. Empirical studies demonstrate that factors such as thermal comfort, indoor air quality, noise exposure, and workspace adequacy significantly influence both productivity and health in home-based work settings [34-36]. These environmental conditions are unevenly distributed across socio-economic and geographic contexts, suggesting that the environmental footprint of remote work is intertwined with broader issues of housing quality and environmental justice. Addressing such inequities requires policy approaches that

integrate housing standards, energy efficiency measures, and occupational health considerations into remote work regulations.

The finding of this study is consistent with C.T. ^[37] argued that remote work policies need to be inclusive of regional disparities in access to energy efficient infrastructure. Concentrated advice systems in high-cost energy areas could lead to worse financial burdens resulting in an economically unfeasible telecommuting structure for workers in such regions impacting their willing of telecommuting. Future research should address how governmental policies, including home energy tax credits and investments in smart grids, may ameliorate these disparities.

The findings of the study also hold important policy implications. Although remote work offers obvious sustainability advantages, it has a complex overall environmental impact that demands a cross-policy approach that weighs carbon reductions resulting from fewer people commuting against more energy being used in residential buildings as a result of the technology connector of modern life. Policymakers must decide on a mix of approaches, such as the following:

- Home energy efficiency incentives to reduce household electricity waste.
- Corporate responsibility measures requiring businesses to track and mitigate their digital energy footprint.
- Stronger e-waste management regulations to prevent the unchecked disposal of telecommuting-related electronic devices.
- Infrastructure investments in smart grids and renewable energy to accommodate rising residential power demands.

From a regulatory perspective, these approaches can be operationalized through concrete instruments, including mandatory corporate disclosure of remote-work-related digital energy use, minimum energy performance standards for home-office equipment, and extended producer responsibility schemes for telecommuting-related electronics. Comparative analyses of remote work policies indicate that jurisdictions combining organizational accountability with employee-level incentives achieve more consistent sustainability outcomes than those relying solely on voluntary guidelines ^[19, 20].

This study represents the most extensive assessment of remote work's environmental impact, demonstrating that although the commuting-associated emissions drop significantly, emissions from residential energy consumption, digital infrastructure use, and the production of electronic waste all increase significantly. These findings sharpen earlier estimates by incorporating novel variables like regional energy intensity factors, weighted carbon savings, and orthogonal digital infrastructure measures. The study also discusses important limitations and future avenues for research, such as seasonal differences in energy use, corporate responsibility for cloud computing emissions, and equity considerations in sustainable telecommuting. As remote work evolves, creating balanced sustainability policies that leverage its environmental advantages and minimize unintentional consequences will be critical for enduring climate resilience.

6. Conclusions

The findings of this study demonstrate that the environmental implications of remote work are complex and multidimensional. The migration from centralized office environments to home-based workspaces has resulted in a significant shift to energy consumption, dependency on digital infrastructure, and waste generation. This has transformed the distribution of energy, showing that energy efficiency monitoring in

individual settings at residential properties is less effective, compared to corporate offices, in tracking heating, cooling and overall electricity consumption. Moreover, the growing reliance on cloud computing and data transfer has heightened digital energy consumption, transferring the environmental cost from transportation to information technology infrastructure. Such factors illustrate that some aspects of remote work are better described in environmental sustainability terms by abstraction — remote work should be viewed from a much broader environmental sustainability lens instead of a “green” framed from commuting-related emissions alone.

The overall environmental impact of remote work is context-specific. Regional energy sources, climate variations, household infrastructure and digital behavior, among other factors all lead to differences in sustainability outcomes. Some of those factors depend on where you live, such as how much of your home energy grid is powered by renewable energy, meaning remote work could have more of an environmental impact in places where fossil fuels dominate electricity generation. Moreover, since residential energy efficiency is not standardized, personal behavior be it over-heating or using devices, varies widely and directly impacts energy consumption. Organizational practices and managerial policies play a critical mediating role in shaping these behavioral patterns. Evidence from organizational psychology and management research indicates that clearly articulated remote work policies, provision of ergonomic and energy-efficient equipment, and guidance on sustainable digital practices can significantly influence employee behavior and reduce unintended environmental impacts. Embedding sustainability considerations into remote work governance, rather than treating them as individual responsibilities; therefore represents a key lever for aligning telecommuting with long-term environmental objectives. These findings indicate that future evaluations of how sustainable remote work is should include localized data and behavioral insights in order to inform more accurate environmental models.

The study also highlights the growing role that digital infrastructure plays in determining the environmental footprint of remote work. The growing reliance on cloud computing, video conferencing, and web usage has a considerable impact on the data center, which consumes vast amounts of energy for computing and cooling. As more companies are now embracing a hybrid or fully remote work model, the providers of those digital services will continue to reap the benefits, raising the question as to whether substrate systems can scale sustainably over time. There is a huge potential with technological change, because we can have more energy-efficient data centers and use more renewable-powered cloud infrastructure, for instance, but we need stronger policy frameworks to ensure that businesses adopt more sustainable digital practices. If not adjusted for, the demand for digital energy generated by remote work could cancel out any emissions saved by reduced commuting emissions.

Another key finding matters the massive growth in electronic waste from telecommuting. Consumer electronics have drawn on personal electronic devices use along with reduced replacement timelines, translating to greater levels of e-waste generation. In corporate offices, devices are used in a managed environment, generally taken care of by centralized IT teams and disposed of using controlled disposal methods. Remote workers do not have that luxury. This can lead to difficulties in the responsible disposal and recycling of such devices, especially in areas where e-waste legislation is lax or nonexistent. The growing demand for new devices also adds to raw-material extraction and manufacturing-induced emissions, making the environmental equation of remote work more complex. Tackling this problem will require policy solutions, corporate responsibility initiatives, and individual awareness to encourage sustainable electronics use and disposal.

These findings point to multiple key improvement areas for making remote work more sustainable. For policymakers, this entails aligning labor regulation with environmental and housing standards; for employers, it requires integrating sustainability criteria into remote work policies and technology provisioning; and for digital service providers, it necessitates investment in energy-efficient and renewable-powered infrastructure. Evidence from organizational and workplace research suggests that coordinated action across these actors is essential to prevent the displacement of environmental burdens from centralized offices to households and digital platforms. Policymakers could explore implementing targeted energy efficiency policies to support remote workers, such as tax credits for energy-efficient home office equipment and subsidies for the installation of residential renewable energy systems. Companies can also be incentivized to provide financial assistance to their employees to help them improve the energy efficiency of their homes thereby furthering reductions in electricity consumption. In addition, companies must implement sustainable ICT policies like optimizing video conferencing bandwidth, eliminating redundant cloud storage, or using energy-efficient software, so they can reduce their ecological footprint on their digital infrastructures.

The study underlines the importance of a greener approach to remotely work sustainability. Instead of seeing it as just another tool to reduce urban congestion and meet emissions targets, future strategy needs to consider its implications for home energy use, waste generation and how much digital infrastructure we are creating. There needs to be collaboration between governments, businesses, and environmental organizations to create policies that find a sweet spot between the benefits of remote work and its potential environmental costs. That includes stronger e-waste recycling laws, energy-efficient housing standards and making sure the shift to digital work does not mean higher global electricity demand.

Future research should investigate how innovative technologies, such as AI-enabled energy management systems and decentralized smart grids, can further enhance the sustainability of remote work. In addition to that its studies can investigate the long-term of behavioral adjustments in telecommuting, for example, how people change their energy uses or technology consumption in the long run. Overall, continued research and policy work will be needed to establish how to minimize the environmental impacts of remote work, while maximizing its potential for sustainable development.

Although remote work presents a potentially effective strategy for reducing transportation-related emissions, its sustainability is largely contingent upon the proper management of the energy requirements and resource consumption it introduces. Through strategic policies, responsible industry principles, and the promotion of energy-saving behavior in individuals, remote work can be maximized as a sustainable workplace model for the long term.

Conflict of interest

The authors declare no conflict of interest

References

1. A. Asatiani and L. Norström, "Information systems for sustainable remote workplaces," *J. Strateg. Inf. Syst.*, vol. 32, p. 101789, 2023-09-01 2023, doi: 10.1016/j.jsis.2023.101789.
2. A. De Lucas Ancillo, S. G. Gavrilă, and M. Del Val, "Workplace change within the COVID-19 context: The new (next) normal," *Technological Forecasting and Social Change*, vol. 194, pp. 122673-122673, 2023-06-01 2023, doi: 10.1016/j.techfore.2023.122673.
3. P. Leonardi, S. Parker, and R. Shen, "How Remote Work Changes the World of Work," *Annual Review of Organizational Psychology and Organizational Behavior*, 2023-12-05 2023, doi: 10.1146/annurev-orgpsych-091922-015852.

4. Y. Tao *et al.*, "Climate mitigation potentials of teleworking are sensitive to changes in lifestyle and workplace rather than ICT usage," *Proceedings of the National Academy of Sciences*, vol. 120, no. 39, p. e2304099120, 2023/09/26 2023, doi: 10.1073/pnas.2304099120.
5. M. Pickard Strange, A. Booth, M. Akiki, S. Wieringa, and S. E. Shaw, "The Role of Virtual Consulting in Developing Environmentally Sustainable Health Care: Systematic Literature Review," *J Med Internet Res*, vol. 25, p. e44823, 2023/5/3 2023, doi: 10.2196/44823.
6. M. Urbane, "Legal preconditions for sustainable remote work in EU in the time of emerging technologies. In: Tareq Ahram and Redha Taiar (eds) Human Interaction & Emerging Technologies," *Artificial Intelligence & Future Applications (AHFE)*, vol. 111, 2023, doi: 10.54941/ahfe1004063.
7. Y. D. Wirtu and G. T. Tucho, "E-waste: Growing environmental and health problems and its management alternatives in developing countries," *Environmental Reviews*, vol. 30, no. 4, pp. 524-536, 2022/12/01 2022, doi: 10.1139/er-2021-0120.
8. İ. Arı and M. Kaya, "The impact of remote working on Türkiye's energy consumption and greenhouse gas emissions: Learning from the experiences of Covid-19 era," (in en), *International Journal of Energy Studies*, vol. 8, no. 4, pp. 701-729, December 2023, doi: 10.58559/ijes.1269648.
9. K. Stefański, "THE FUTURE OF REMOTE WORK – LEGAL DILEMMAS," *Annals of Administration and Law*, vol. 2, pp. 297-306, 2022. [Online]. Available: <https://sip.lex.pl/komentarze-i-publikacje/czasopisma/the-future-of-remote-work-legal-dilemmas-151438241>.
10. H. M. Baumann and T. M. Marcum, "Human capital and legal perspectives on remote work: recommendations for organizations," *Management Research Review*, vol. 46, no. 12, pp. 1711–1726, 2023, doi: 10.1108/MRR-06-2022-0412.
11. B. Orzeł and R. Wolniak, "Digitization in the Design and Construction Industry—Remote Work in the Context of Sustainability: A Study from Poland," *Sustainability*, vol. 14, no. 3, doi: 10.3390/su14031332.
12. B. Ferrara, M. Pansini, C. De Vincenzi, I. Buonomo, and P. Benevene, "Investigating the Role of Remote Working on Employees' Performance and Well-Being: An Evidence-Based Systematic Review," *International Journal of Environmental Research and Public Health*, vol. 19, no. 19, 2022, doi: 10.3390/ijerph191912373.
13. R. Saher, M. Saleh, and M. Anjum, "Holistic Trash Collection System Integrating Human Collaboration with Technology," *Applied Sciences*, vol. 13, no. 20, doi: 10.3390/app132011263.
14. R. Roberto, A. Zini, B. Felici, M. Rao, and M. Noussan, "Potential Benefits of Remote Working on Urban Mobility and Related Environmental Impacts: Results from a Case Study in Italy," *Applied Sciences*, vol. 13, no. 1, doi: 10.3390/app13010607.
15. O. V. Erhueh, C. Nwakile, E. Hanson, A. E. Esiri, and T. Elete, "Enhancing energy production through remote monitoring: Lessons for the future of energy infrastructure," *Engineering Science & Technology Journal*, vol. 5, no. 10, pp. 3014-3053, 2024, doi: 10.51594/estj.v5i10.1671.
16. X. Liu, "Impacts of Environmental Pollution and Digital Economy on the New Energy Industry," *Sustainability*, vol. 15, no. 12, doi: 10.3390/su15129262.
17. L. Cicala, F. Gargiulo, S. Parrilli, D. Amitrano, and G. Pigliasco, "Progressive Monitoring of Micro-Dumps Using Remote Sensing: An Applicative Framework for Illegal Waste Management," *Sustainability*, vol. 16, no. 13, doi: 10.3390/su16135695.
18. L. Cattani, A. Magrini, and A. Chiari, "A Method and Metrics to Assess the Energy Efficiency of Smart Working," *Buildings*, vol. 14, no. 3, doi: 10.3390/buildings14030741.
19. O. Olawale, F. A. Ajayi, C. A. Udeh, and O. A. Odejide, "REMOTE WORK POLICIES FOR IT PROFESSIONALS: REVIEW OF CURRENT PRACTICES AND FUTURE TRENDS," *International Journal of Management & Entrepreneurship Research*, 2024-04-25 2024, doi: 10.51594/ijmer.v6i4.1056.
20. I. Simeli, G. Tsekouropoulos, A. Vasileiou, and G. Hoxha, "Benefits and Challenges of Teleworking for a Sustainable Future: Knowledge Gained through Experience in the Era of COVID-19," *Sustainability*, 2023-07-31 2023, doi: 10.3390/su151511794.
21. A. Savoldelli, D. Landi, and C. Rizzi, "Exploring Quantitative Methodologies for Assessing the Environmental, Social, and Economic Impacts of Telemedicine: A Literature Review," *Sustainability*, 2024-03-15 2024, doi: 10.3390/su16062438.
22. Y. Huang *et al.*, "Rapid detection of high-emitting vehicles by on-road remote sensing technology improves urban air quality," *Science Advances*, vol. 8, no. 5, p. eab17575, doi: 10.1126/sciadv.abl17575.
23. G. Chalabi and H. Dia, "Telecommuting and Travel Behaviour: A Survey of White-Collar Employees in Adelaide, Australia," *Sustainability*, 2024-03-29 2024, doi: 10.3390/su16072871.
24. S. Tan, K. Fang, and T. Lester, "Post-pandemic travel patterns of remote tech workers," *Transportation Research Interdisciplinary Perspectives*, 2023-05-01 2023, doi: 10.1016/j.trip.2023.100804.
25. H. Ali *et al.*, "Technological innovations and sustainability: Shaping the future of smart cities in urban planning," *Edelweiss Applied Science and Technology*, vol. 8, pp. 1992-2011, 09/12 2024, doi: 10.55214/25768484.v8i4.1577.

26. Z. Hong and K. Xiao, "Digital economy structuring for sustainable development: the role of blockchain and artificial intelligence in improving supply chain and reducing negative environmental impacts," *Scientific Reports*, vol. 14, 2024-02-16 2024, doi: 10.1038/s41598-024-53760-3.
27. F. Sepanta, W. O'Brien, and L. Arpan, "Interview study to uncover the energy use impacts and behaviours of teleworkers who relocated during COVID-19 in Canada," *Architectural Science Review*, vol. 66, no. 6, pp. 488-503, 2023/11/02 2023, doi: 10.1080/00038628.2023.2253780.
28. V. Gary, S. Sarah, and N. Deborah, "Long-Term Effects of COVID-19, and Its Impact on Business, Employees, and CO2 Emissions, a Study Using Arc-GIS Survey 123 and Arc-GIS Mapping," *Sustainability*, vol. 14, no. 20, doi: 10.3390/su142013689.
29. A. Eriksson, L. Dellve, A. Williamsson, and K. Skagert, "How Conditions and Resources Connected to Digital Management Systems and Remote Work Are Associated with Sustainable Work," *International Journal of Environmental Research and Public Health*, vol. 19, no. 23, doi: 10.3390/ijerph192315731.
30. Y. Zeng, X. Xu, Y. Zhao, and B. Li, "Impact of Digital Economy on the Upgrading of Energy Consumption Structure: Evidence from Mainland China," *Sustainability*, vol. 15, no. 7, doi: 10.3390/su15075968.
31. S. T. Ghulam and H. Abushammala, "Challenges and Opportunities in the Management of Electronic Waste and Its Impact on Human Health and Environment," *Sustainability*, vol. 15, no. 3, doi: 10.3390/su15031837.
32. Á. Bogason, Brynteson, M., & Salonen, H., "Remote Work in Rural Areas: Possibilities and uncertainties," *Nordregio report*, 2024, doi: 10.6027/r2024:71403-2503.
33. J. Chen and A. Zhang, "Exploring How and When Environmental Corporate Social Responsibility Impacts Employees' Green Innovative Work Behavior: The Mediating Role of Creative Self-Efficacy and Environmental Commitment," *Sustainability*, vol. 16, no. 1, doi: 10.3390/su16010234.
34. A. Mura, S. Aricchio, T. Villani, F. Bonaiuto, and M. Bonaiuto, "The Physical Environment in Remote Working: Development and Validation of Perceived Remote Workplace Environment Quality Indicators (PRWEQIs)," *Sustainability*, 2023-02-04 2023, doi: 10.3390/su15042858.
35. A. Mura, L. Insalata, and M. Bonaiuto, "My home is my new office: the relationship between environmental comfort, workplace attachment, and psychological needs in the context of remote working," *Journal of Environmental Psychology*, 2024-07-01 2024, doi: 10.1016/j.jenvp.2024.102378.
36. A. Young *et al.*, "Home indoor air quality and cognitive function over one year for people working remotely during COVID-19," *Building and environment*, vol. 257, 2024-04-01 2024, doi: 10.1016/j.buildenv.2024.111551.
37. S. C.T, "Towards Sustainable Inclusion: IFTCR Framework for Diverse and Equitable Remote Work Environment in IT Industry," *Journal of Development Economics and Management Research Studies*, vol. 11, no. 22, pp. 41-49, 2024, doi: 10.53422/jdms.2024.112205. .