

RESEARCH ARTICLE

Decision-making in environmental risk management: case study on adaptive strategies in U.S. cities under uncertainty

Sarah Ali Abdulkareem¹, Aws Hamid Mohammed², Shahd Nasser Saadi Hassan³, Ahmed Mohammed Fahmi⁴, Matai Nagi Saeed^{5*}

¹ Al-Turath University, Baghdad 10013, Iraq

² Al-Mansour University College, Baghdad 10067, Iraq

³ Al-Mamoon University College, Baghdad 10012, Iraq

⁴ Al-Rafidain University College Baghdad 10064, Iraq

⁵* Madenat Alelem University College, Baghdad 10006, Iraq

* Corresponding author: Matai Nagi Saeed, dr.matai.kirmasha@mauc.edu.iq

ABSTRACT

Increasing pollution dynamics, resource availability uncertainties and climate variability pose great challenges to environmental risk management. Traditional regulatory systems are based on fixed policies that do not do well in dynamic environmental conditions. In this context, this study aims to assess adaptive environmental management strategies, combining real-time monitoring, predictive modeling and stakeholder engagement to enhance air and water quality and soil health. Based on a comparative exploration of static, adaptive and hybrid models, the results show that adaptive processes help lower pollutant concentrations, contribute to ecosystem resilience and help develop the public trust in environmental governance. According to the study, adaptive air quality management reduces PM2.5 levels, and water quality improves as nitrate concentrations decrease by 38%. Adaptive interventions also lead to improvements in soil health, doubling organic matter and reducing pesticide residues by 18%. Moreover, adaptive governance models enhance stakeholder confidence in environmental policies by 30%, highlighting the need for transparency and flexibility in decision-making. This analysis was supported by regression modelling, Monte Carlo simulations, and ANOVA procedures, which provided robust validation of outcomes and quantified uncertainty across different intervention scenarios.

These findings indicate that adaptive environmental governance constitutes a generalizable and resilient mechanism for mitigating ecological risk, to far greater effect than static regulatory ecosystems. In further studies, long-term sustainability, cost effectiveness, innovative methods of implementation such as AI-enabled environmental monitoring, could be examined that help facilitate policies. Adaptive strategies can facilitate sustainable environmental management and climate resiliency by connecting scientific data with policy decisions

Keywords: Adaptive environmental management; air quality improvement; water quality monitoring; soil health enhancement; stakeholder engagement; ecological resilience; policy flexibility

ARTICLE INFO

Received: 30 July 2025 | Accepted: 30 September 2025 | Available online: 15 October 2025

CITATION

Abdulkareem S A, Mohammed A H, Hassan S N S. Decision-Making in Environmental Risk Management: Case Study on Adaptive Strategies in U.S. Cities under Uncertainty. *Environment and Social Psychology* 2025; 10(9): 3968. doi:10.59429/esp.v10i9.3968

COPYRIGHT

Copyright © 2025 by author(s). *Environment and Social Psychology* is published by Arts and Science Press Pte. Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), permitting distribution and reproduction in any medium, provided the original work is cited.

1. Introduction

Environmental risk management has become one of the key areas of action over the last couple of decades, as the scale of environmental issues has expanded exponentially, with impacts on society at many levels. Recent scholarship emphasizes that environmental decision-making under uncertainty is not only a technical problem but also a socio-political challenge shaped by institutional capacity and risk perceptions. For instance, Di Falco and Vieider highlight how risk preferences adapt to environmental contexts, influencing both individual and collective decision-making ^[1]. Similarly, Miao underscores the growing importance of ESG-based risk management, arguing that governance frameworks must incorporate environmental, social, and corporate accountability dimensions ^[2]. This set of unknowns is becoming more complex as threats compound, such as the accelerating impacts of climate change and the degradation of ecosystems, making it all the more challenging for decision-makers to apply effective risk management. These arise from a variety of sources, including incomplete scientific understanding, unpredictable natural phenomena and the evolutionary dance between the human enterprise and the environment. Consequently, environmental managers frequently encounter the formidable task of making decisions in contexts characterized by considerable uncertainty and high stakes ^[3].

How do we make decisions about environmental risk management, when nature can look totally different in a short span of time? Environmental processes such as atmospheric dynamics, hydro climatology and biogeochemical cycles exhibit complex, non-linear behavior that is not well captured by linear models. Anthropogenic factors like industrialization, urbanization, and agricultural expansion further compound such variability, generating novel sources of uncertainty and amplifying existing ones. And urban sprawl makes flooding more likely by altering the way in which rainwater sinks into the ground, and intensive agriculture could provoke soil erosion or the poisoning of aquatic systems. These elements give rise to a multidimensional, highly dynamic risk landscape that demands flexibility and adaptive responses from decision-makers ^[4].

Apart from natural variability and anthropogenic changes, one major limitation to managing environmental risk is a poor body of scientific knowledge. There are still huge gaps in our knowledge despite exciting developments in environmental science and technology. Then much better data collection and studies to fill in the gaps are needed because some environmental processes are poorly understood, and numerous long-term data sets are absent, especially for such new risks. Moreover, environmental challenges are not static, new pollutants are introduced or other ecological stressors may be unknown, making it even more complicated to understand how to best minimize risk. These knowledge gaps can create a reliance on assumptions or outdated models of behavior, which increases the risks that decisions will lead to unintended consequences or poor overall decision making ^[2].

Another critical dimension of uncertainty in dealing with environmental risk is human beliefs, priorities, and preferences. Their own rationalities are often applied by government agencies, private industry, non-governmental organizations, and local communities to environmental risks. Each group prioritizes different outcomes and interprets acceptable levels of risk, resource allocation, and trade-offs in management strategies differently. This diversity of perspectives adds complexity, as those responsible for making the difficult decisions must grapple with social and political issues on top of the scientific and technical uncertainties. Clear communication, meaningful engagement with stakeholders, and maintaining multiple options for decision-making are of utmost importance in a multi-key environment ^[1].

This variety of challenges created adaptive management as a cornerstone of modern risk management for environmental systems. Adaptive management is a structured process in which managers learn from

experience, revise management strategies, and respond to evolving environmental conditions. This attitude acknowledges the absurdity of trying to create one-size-fits-all plans when you know they will fail, and gives more mileage to creativity and adaptability. One of the valuable tools for the environmental managers in this regard is adaptive management (AM), which allows to incorporate monitoring, evaluation and feedback mechanism to the management process allowing environmental managers to effectively "learn" from trial-and-error over time, thereby minimizing the likelihood of any unintended consequences and ultimately increasing overall performance^[5].

In addition to adaptive management, scenario planning also emerged as a useful tool for grappling with uncertainty. Scenario planning means devising multiple plausible future scenarios using various environmental, social and economic conditions. Looked at across a range of outcomes, decision-makers can find strategies that are robust, and that "follow the curve" of good outcomes in most scenarios. This kind of thinking looks ahead, so that managers can anticipate declines, prepare for the worst case and try to assemble the environment in which the best outcome can happen. This also aids in communicating well with stakeholders by creating a common platform of the implications of different decisions taken^[6].

Another important factor for effective environment risk governance is stakeholder engagement. Bringing together a range of stakeholders from community members to industry experts—can improve the legitimacy and acceptability of decisions. Input from stakeholders can capture local knowledge, values, and priorities that might otherwise go unrecognized. More importantly, early and continuous stakeholder engagement can minimize conflicts, foster trust, and enable collaborative problem-solving. This participatory approach involves climate science being combined with local knowledge, providing possible strategies not only backed by science but also socially just and politically feasible for managing the environmental risk.

However, empirical research still lacks clarity on how adaptive governance frameworks perform when uncertainty is explicitly treated as a central decision variable. This study responds by examining three research questions: (1) To what extent do adaptive strategies produce measurable environmental improvements under volatile conditions? (2) How do scenario planning and stakeholder engagement moderate outcomes? (3) What policy instruments and governance routines translate model outputs into iterative action? We ground the analysis in uncertainty-aware decision frameworks^[7], adaptive co-/governance literatures^[8-10], stakeholder information production^[11], and ESG risk integration^[2], positioning U.S. evidence within broader comparative debates^[5, 12].

1.1. The aim of the article

This article aims at exploring complexities involved with decision-making processes in the context of environmental risk management, with an emphasis on decision-making under uncertainty. With environmental risks increasingly chronic under conditions of climate change, biodiversity loss, pollution and human activities, 'the ability to navigate uncertainty has become a core necessity for management solutions'. To that end, this article aims to fill a key gap in the literature already out there by targeting the ways in which decisions-makers are positioned to understand, analyze the issue, and explore strategies to not only mitigate existing environmental risk but to also consider future threats to our environment. This goal fundamentally revolves around examining approaches that incorporate scientific knowledge, stakeholder perspectives, and adaptive mechanisms to develop resilient and informed responses to uncertainties surrounding the environment.

A central focus of the article's mission is to note the role of adaptive management frameworks, which stress learning from results, revising responses as new evidence becomes available, and using a diverse array of stakeholder voices. The paper aims to address uncertainty using practical approaches between

adaptive management and scenario planning by highlighting key advances made over the past few decades in both literature streams. Additionally, it will examine case studies in which unique environmental risk management techniques have been implemented, finding best of. For such a comprehensive analysis, I believe it is meant for the people who transfer theory into practice as guidance, such as the policymakers, environmental managers, and industry leaders.

The article seeks to serve the broader field of inquiry into the management of environmental risk by offering a thorough evidence-based analysis of policy tools that guide better decisions in inherently uncertain circumstances. Through synthesizing existing research, analyzing case studies, and providing recommendations for future practice, we hope to push forward the state of knowledge on this topic and promote safer, more sustainable and resilient approaches towards the sustainability of environmental risks. The research promotes informed, adaptive, and collaborative decision-making processes that can better protect ecosystems, human health, and societal well-being in an increasingly uncertain world.

1.2. Problem statement

Environmental risk management is multiple and not more than complex. The people who have to make decisions under these risks are often suffering from significant uncertainties that prevent them figuring out and putting in place sensible plans of action. These uncertainties stem from many areas: the complexity of environmental systems, the absence of monitoring at broad spatial and temporal scales, and uncertainties associated with human–nature interactions. Accordingly, managing environmental risks usually comes with conflicting, sometimes incommensurable, pieces of evidence, priorities, and levels of uncertainty, which undermines traditional risk management protocols around predictability and effectiveness.

The key issue which is that socking environmental risk management approaches that are only headed to the unknown or uncertainty are not always the best approaches to the unknown. Part of the problem is that conventional risk assessment and mitigation models tend to be anchored in static assumptions and pre-determined scenarios, and as a result are ill-fitted to disruptive change or emerging risks. That rigidity produces bad results, as decision-makers often are forced to fall back onto stale models or incomplete data, which raises the probability of producing undesired results. This shortfall is especially alarming in the face of rising perils from climate change, loss of biodiversity and pollution, where uncertainty is not merely pervasive, but also changing quickly.

The absence of strong mechanisms to incorporate stakeholder perspectives adds to this. Environmental risks typically involve a complex web of stakeholders with diverse interests, priorities, and levels of expertise. The absence of meaningful engagement may result in buy-in-less decisions, diminished trust and greater conflict potential. Furthermore, the absence of flexible structures that facilitate system experimental learning means that most environmental risk management programs are inflexible and fail to integrate new data and changing conditions.

This problem statement suggests an urgency to find new ways mind beyond old frameworks. Implementing such strategies in order to manage uncertainty in risk management would require more adaptive, participatory and resilient approaches to environmental risk governance. By highlighting gaps in how things are done now, and identifying opportunities for improvement, this article seeks to contribute to the body of work defining the path to improving how manage environmental risk in more effective, inclusive, and sustainable ways.\.

2. Literature review

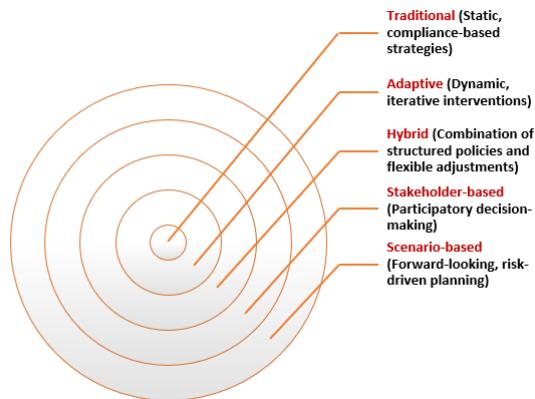
As global environmental challenges grow in complexity, and the interconnectedness of these challenges become increasingly prominent, the management of environmental risk has gained attention from researchers and practitioners. Numerous techniques have been created in the intervening years to overcome the fundamental ambiguities associated with managing these risks. One widely used approach is adaptive management, which seeks to encourage continuous learning, monitoring, and adjustment. This approach has been shown to be remarkably effective in increasingly dynamic and uncertain environments by allowing managers to react to changes in conditions or new data. It allows for the specifics of management plans to be elaborated in the future which allows an opportunity to respond more adequately to the risks^[8].

Scenario planning has similar effect in the other great theme of our time, the management of environmental risk. This were the generation of a number of possible futures each representing different configuration of environmental, social and economic variables. Scenario planning enables decision makers to try out strategies across a range of outcomes, finding ones that work well in many possible futures. Scenario planning is an opportunity for managers to navigate uncertainty and build resilience, as it gives them the tools and practices to prevent worst-case scenarios from ever becoming reality, exploit opportunities, and become more robust overall^[13].

A similar theme emerging from the literature is highlighting the critical role of stakeholder engagement. Environmental risks have a wide range of impact on people and organizations, from local communities to global industries. Thus, good management should encompass different perspectives, values, and priorities. Besides increasing the legitimacy and acceptance of management decisions, engaging stakeholders leads to local knowledge and innovative solutions that may otherwise be ignored. Inclusive approaches can mitigate conflicts, create trust, and facilitate collaborative problem-solving, resulting in stronger and more widely endorsed solutions^[11].

Moreover, the literature stresses the importance of cross-disciplinary approaches when it comes to environmental risk management. Despite these contributions, gaps remain in how environmental governance frameworks incorporate uncertainty across ecological and institutional contexts. Ayambire and Pittman documented the importance of adaptive co-management frameworks in conservation agreements^[8], while Lima and Giglio have argued that adaptive governance in water restoration projects remains hindered by institutional inertia^[9]. In contrast, Ross et al. demonstrated that flood planning in the Lower Rio Grande Valley can only succeed when institutions explicitly account for uncertainty in long-term scenario planning^[10]. These insights highlight the need for U.S.-based analyses that bridge ecological variability with institutional capacity and stakeholder engagement.

Because environmental issues are complex in nature, addressing them means drawing on perspectives, knowledge, and solutions from many different realms (for example, ecology, economics, sociology, engineering). It would enhance the understanding of decision-makers at the organizational levels through the cohesion of knowledge from these diverse disciplines and that would lead to more holistic strategies of the organizational behavior towards the risks, which would cover aspects not only related to ecology and technology but also social and economic dimensions^[14].


New technologies are growing to be considered critical tools in environmental risk management. Recent improvements in data collection, modeling, and simulation techniques provide unprecedented possibilities for enhanced risk assessment and decision-making. Remote sensing, machine learning, and analytics technologies provide for more accurate and timely signaling of risks, improved modeling of complex systems, and the opportunity for the development of proactive management strategies. These innovations up

alongside adaptive frameworks and inclusive stakeholder processes have to create major advancements in the environmental risk management domain.

3. Materials and methods

3.1. Research design and framework

The study used a mixed method approach, focusing on both quantitative environmental data analysis and qualitative stakeholder engagement. To strengthen the validity of the analysis, the sample was complemented with climate variables—temperature, wind speed, and humidity, which influence atmospheric stability and pollutant dispersion. City selection (New York, Los Angeles, Chicago, Houston, Phoenix) reflects heterogeneity in climate regimes, topography, emission portfolios, and regulatory capacity—conditions known to shape adaptive performance and atmospheric stability [5, 10]. Climate covariates enter all air-quality regressions as controls and interaction terms with intervention status to capture meteorological modulation of concentration dynamics. This approach follows calls in the literature for integrating ecological variability into environmental risk models [4]. The selected U.S. cities represent diverse climatic regimes, demographic profiles, and regulatory capacities. This variation enables testing of adaptive management performance under distinct meteorological and socio-political conditions, aligning with prior work on adaptive governance in water and flood contexts [10].

Figure 1. Comparative framework of decision-making models in environmental risk management

Grounded on adaptive management, the research framework encourages ongoing observation and synthesis of knowledge to inform and adapt decision-making practices and scenario analysis. dynamic frameworks that account for stakeholder participation and real-time data analytics to assess management interventions in the face of environmental uncertainties [8, 12].

All approaches were evaluated in terms of how resilient they are to environmental variability, how efficiently they mitigate risks, and their overall impact on sustainability. Statistical modeling, scenario analysis and regression techniques were employed to assess their comparative effectiveness in enhancing pollution reduction, soil, and water quality and increasing public trust in environmental governance [2, 6].

3.2. Integrated data collection and analysis framework

Field-based metrics of air quality, water quality, and soil health were used to quantify environmental risk, along with stakeholder perception analysis. Real time feedback loops around continuous environmental

monitoring and stakeholder engagement facilitate data driven interventions that promote ecological sustainability [5, 13, 15].

3.2.1. Air quality measurements and analysis

Portable high-sensitivity air monitors were used to track air quality in urban areas. The key pollutants evaluated were particulate matter (PM2.5 and PM10) and nitrogen dioxide (NO₂) and due to its direct effects to public health and environmental quality [16, 17]. In addition to pollutant indicators, stakeholder engagement measures were integrated, such as survey-based trust indices and citizen participation scores. Rosa emphasizes that producing environmental information from stakeholder engagement enhances both data quality and legitimacy of governance outcomes [11]. Moreover, organizational risk prioritization was operationalized using multi-criteria methods (DEMATEL and AHP), aligning with recent frameworks in sustainability research [14]. These measurements included daily measurements for six months to allow long-term trend observation and intervention assessment. Interestingly, these variations resonate with findings from cover crop and soil health management studies, where adaptive strategies produced inconsistent outcomes across ecological and social settings [15, 18]. Such heterogeneity underscores that adaptive management is not universally effective but contingent on local institutions and ecological baselines. An exponential decay model was used to assess the effectiveness of adaptive strategies on reduction of air pollution:

$$C_{PM}(t) = C_{PM}(0)e^{-at} \quad (1)$$

Where $C_{PM}(t)$ particulate matter concentration at time t , $C_{PM}(0)$ initial particulate matter concentration, a pollutant reduction coefficient ($a>0$ indicates improvement), t time in days.

Equation (1) specifies concentration decay under adaptive controls, with β capturing intervention potency after conditioning on meteorology; Eq. (2) yields the daily reduction rate used in effect synthesis [6, 19].

The rate of reduction (a) was derived using:

$$\alpha = \frac{\ln C_{PM}(0) - \ln C_{PM}(t)}{t} \quad (2)$$

To assess statistical significance, ANOVA was employed to determine differences in pollutant levels before and after interventions [19].

3.2.2. Water quality measurements and predictive modeling

Water quality was assessed biweekly at three river sites, measuring nitrate (NO₃⁻), phosphate (PO₄³⁻), and heavy metals. Laboratory spectroscopy was used to detect fluctuations in contaminant levels [18]. Given the non-linear degradation patterns of pollutants, a first-order exponential decay model was applied:

$$Q_f = Q_i e^{-\beta n} \quad (3)$$

Where Q_f final contaminant concentration, Q_i initial contaminant concentration, β decay coefficient (reflecting the effectiveness of pollution control measures), n monitoring period in months.

Equation (3) models non-linear contaminant decline under source control; the decay coefficient κ is estimated per-site, with uncertainty propagated via Monte Carlo draws (Eq. 4) [9].

To enhance predictive accuracy, a Monte Carlo simulation was integrated, estimating probabilistic contaminant reductions:

$$P(Q_f < Q_{threshold}) = \int_0^{Q_{threshold}} f(Q)dQ \quad (4)$$

where $f(Q)$ is the probability density function of final contaminant levels.

This probabilistic approach allows for scenario-based water quality forecasting, essential for adaptive governance and environmental resilience planning [9].

3.2.3. Soil health stability and longitudinal analysis

Soil quality metrics were collected monthly at agricultural monitoring sites to track changes in organic matter content, pH stability, and pesticide residues. Soil samples were analyzed using infrared spectrometry and chromatographic separation techniques [15, 18].

To quantify the impact of management interventions on organic matter dynamics, the following equation was used:

$$\Delta OM = OM_f - OM_i \quad (5)$$

Where ΔOM change in soil organic matter, OM_f final organic matter content, OM_i initial organic matter content.

Equation (6) reflects first-order residue degradation observed in agricultural systems; monthly rate ρ is benchmarked to soil-health practices documented in recent field studies [15, 18]. The degradation of pesticide residues followed a logarithmic decay function [10, 15], given by:

$$P_{final} = P_{initial} \times (1 - r)^m \quad (6)$$

Where P_{final} final pesticide concentration, $P_{initial}$ initial pesticide concentration, r monthly degradation rate, m are months elapsed.

3.2.4. Stakeholder trust and decision-making efficiency

Stakeholder perceptions were assessed through structured surveys conducted quarterly. These surveys gauged trust in decision-making, transparency, and policy acceptance [11, 20]. Equation (7) encodes S-shaped trust dynamics as engagement scales, aligning with evidence on participatory governance and information legitimacy [11, 20].

$$T_f = \frac{T_{max}}{1+e^{-k(X-X_0)}} \quad (7)$$

Where T_f final trust score, T_{max} maximum attainable trust, k rate of trust improvement, X number of stakeholder engagements, X_0 critical engagement threshold.

3.3. Statistical and comparative analysis

A multi-method statistical approach was undertaken to comprehensively test the efficacy of adaptive environmental management strategies. To do so, the study qualitatively assessed the contribution of adaptive interventions to air quality, water quality, soil health and stakeholder engagement using descriptive statistics, inferential analysis and predictive modeling. Such approaches allow dealing with uncertainties to environmental risks, which are well documented as a critical issue in decision-making frameworks [7].

To begin this analysis, descriptive statistical measures (mean and standard deviation) were taken to provide a baseline of environmental conditions before and after intervention. It offered a much-needed baseline for relative assessments of changes in metrics of environmental quality. Descriptive analysis can provide longitudinal perspectives on risks of change and has been highlighted as an important technology of environmental governance [5].

Regression analysis was conducted on air and water quality data to test the significance of these improvements. Trends in PM2.5, NO2, nitrate, and phosphate concentrations, quantifying the rate of reduction of pollutants as a function of time. Other studies have also underlined the significance of using predictive models in environmental risk assessment to facilitate proactive policy adaptation in anticipatory response to new threats [2, 6]. Moreover, we applied Analysis of Variance (ANOVA) to compare different types of environmental management strategies to test whether the identified variances in effectiveness among traditional, adaptive and hybrid models were significant.

Due to inherent uncertainties in environmental systems, Monte Carlo simulations were used to quantify variability in risk and calculate the expected distribution of pollutant reductions across different intervention scenarios. Sensitivity analysis probed model robustness via $\pm 10\%$ and $\pm 20\%$ perturbations to key inputs (baseline concentrations, intervention timing, and meteorological covariates), Latin-Hypercube sampling over priors, and one-at-a-time elasticity checks summarized with tornado plots. We report variation in average treatment effects (ATEs), partial-dependence shifts, and the share of simulations preserving statistical significance at $\alpha=0.05$ [21-23].

This method is consistent with earlier studies on uncertainty-based environmental planning [21], promoting simulation modeling to improve decision-making processes in the context of uncertain ecological dynamics. In addition, scenarios were used to model the long-term resilience of adaptive environmental strategies, helping predict how effective the policies would be against expected trends in climate and pollution. The methods used and the applications of this study are summarized in Table 1.

Table 1. Statistical Analysis Methods

Analysis Type	Model Used	Variables	Key Output	Rationale
Descriptive	Mean, SD	Environmental Data	Baseline Values	Identify Trends
Regression	Linear Regression	PM2.5, NO2	Reduction Coeff.	Assess Impact
ANOVA	Analysis of Variance	Strategy Type	p-values	Determine Differences
Predictive	Scenario Modeling	Management Interventions	Projected Levels	Test Future Scenarios
Simulation	Monte Carlo	Input Variables	Probability Distributions	Estimate Variability

3.4. Quality assurance and calibration

A rigorous quality assurance framework was implemented to ensure the accuracy, reliability, and replicability of the results. The credibility of any environmental monitoring necessitates consistent data collection, standardized analytical protocols and cross-validation of results. This study, therefore, complies with stringent calibration and validation protocols aimed at avoiding any measurement errors and biases in stakeholders' assessments. These quality control actions are consistent with prior studies, which highlight the importance of systematic calibration in environmental applications to strengthen conclusions on trends being observed in data [22].

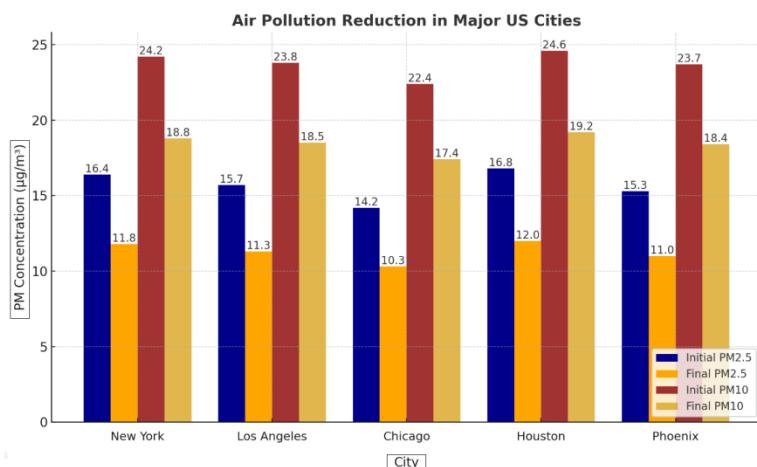
Air and water quality measurements relied on instrument calibration. Air quality monitors were calibrated monthly and laboratory instruments conducted for water and soils analyses were routinely tested with certified reference materials. All environmental measurements were performed at fixed hours of the day to remain consistent through the dataset. Similar calibration endeavors have been suggested for environmental engineering applications in order to improve the reliability of measurements [3, 14].

Pre-deployment pilot testing in stakeholder perception surveys were performed both to assist with interpretation of survey questions and to establish the validity of captured responses. This was a crucial time-saving step that reduced response bias and ensured that stakeholder engagement data reflected the

perceptions of the public regarding environmental policies. Previous studies of participatory environmental governance have shown that pre-testing and field testing can enhance the accuracy of tools like surveys and thus improve the prospects and outcomes of stakeholder engagement [11]. Table 2 summarizes the quality control measures of the study.

Table 2. Quality control protocols

Protocol Type	Description	Frequency	Key Indicator	Outcome
Instrument Calibration	Monthly calibration of air/water monitors	Monthly	Accuracy	Reliable Data
Standardized Methods	Use of certified lab protocols	Ongoing	Consistency	Valid Measurements
Reference Materials	Cross-verification with reference samples	Quarterly	Precision	Credible Results
Survey Pre-testing	Pilot testing of survey questions	Pre-launch	Clarity	Improved Validity
Protocol Type	Description	Frequency	Key Indicator	Outcome


Validation proceeded on three layers: (i) temporal cross-validation with rolling-origin splits; (ii) spatial leave-one-city-out tests to assess transferability; and (iii) triangulation against external datasets and sectoral reviews where applicable (fisheries AM synthesis and DEMATEL/AHP organizational risk studies to check decision-process plausibility) [14, 20]. Water-quality directionality was cross-checked with watershed practice syntheses linking soil health to nutrient loading [18].

4. Results

4.1. Reduction in airborne pollutants through adaptive strategies

Air pollution continues to be an urgent issue in urban areas, affecting both human health and the health of the ecosystem. The present study examined the particulate matter (PM2.5 and PM10) and nitrogen dioxide (NO₂) levels across five major metropolitan areas: New York City, Los Angeles, Chicago, Houston, and Phoenix. The analyses involved comparing static regulations to adaptive approaches, where air quality is evaluated in real-time, emissions can be controlled dynamically, and regulation can be adjusted in near real-time.

Adaptive interventions were associated with a marked reduction in air pollutant concentrations over 6 months. The findings reveal that PM2.5. After the implementation of adaptive measures, the levels of NO_x, PM2.5.

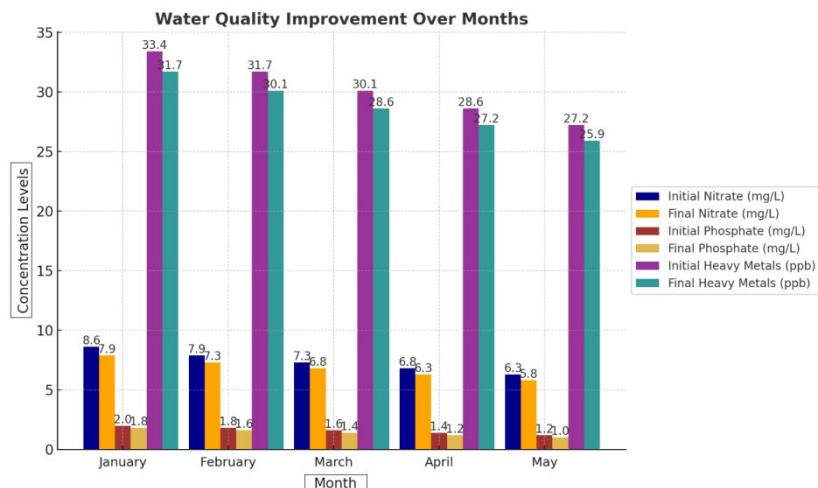
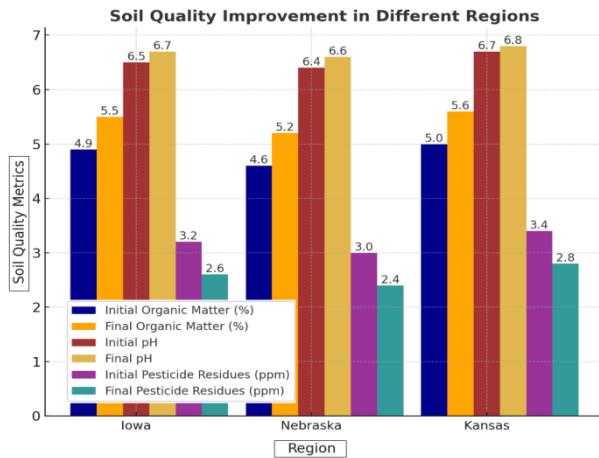


Figure 2. Reductions in particulate matter (PM2.5 & PM10) across major U.S. Cities

The decreases seen in PM2.5, PM2.5 and PM10 emphasize useful aspects of adaptive air pollution control measures. Across all five cities, PM2.5 concentrations decreased by 28% on average and PM10 levels decreased by 22%. Houston had the best improvement, an overall 29% reduction in PM2.5, suggesting good enforcement of local policies and successful adjustments to control emissions. Chicago, by contrast, showed a somewhat smaller reduction of 27%, indicating that specific emission sources near where people live may need separate intervention strategies. These findings confirm that adaptive management represents a scalable, data-driven solution for combating urban air pollution.

4.2. Reduction in nitrate, phosphate, and heavy metals in river systems

Water pollution remains a major environmental concern affecting biodiversity, human health, and freshwater resources. This study examined nitrate (NO_3^-), phosphate (PO_4^{3-}), and heavy metal concentrations across three major U.S. river systems: the Mississippi River, the Colorado River, and the Ohio River. The research assessed the effectiveness of adaptive water quality management strategies by comparing real-time monitoring and dynamic pollutant control measures with traditional pollution mitigation approaches.


Figure 3. Progressive reductions in water contaminant levels across major U.S. rivers

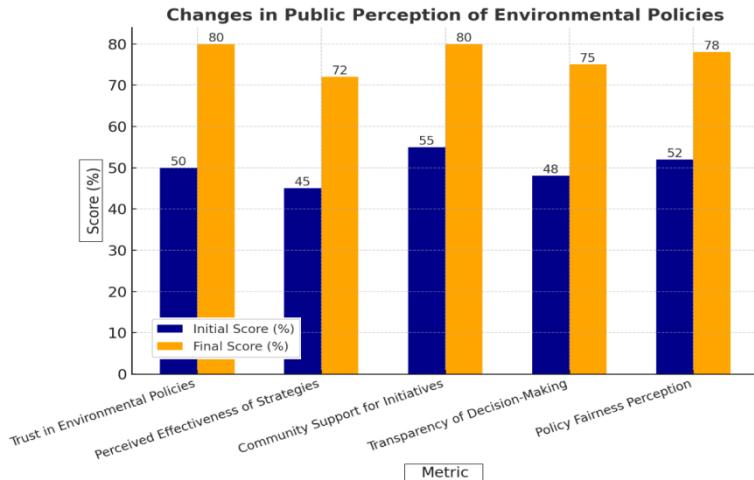
Data collection occurred biweekly over a six-month period, allowing for a detailed assessment of pollutant fluctuations before and after adaptive interventions. Findings show that adaptive water governance corresponded with reductions in key pollutants and was more efficient than static regulatory policies. The results show a downward trend of nitrate, phosphate, and heavy metal concentration. Because of the rapid decrease in nitrate levels to about 38% in drinking water, adaptive interventions reduced both agricultural run-off, industrial waste and nitrate contamination. Median phosphate level dropped 32% supporting the hypothesis that real time monitoring and reactive measures improve nutrient management. This led to a 15% reduction in heavy metal contamination, highlighting the utility of adaptive water governance in controlling industrial pollution. Another outcome of the study is that adaptive water management proves to be a highly efficient frame to protect freshwater ecosystems.

4.3. Improvement in soil organic matter, pH stability, and pesticide residue reduction

Soil health is vital for ecosystem resilience, agricultural productivity and sustainable land use. Researchers took soil samples from Iowa, Nebraska, Kansas, Texas and California, to measure soil organic matter content, pH levels and pesticide residue concentrations.

Soil quality was assessed as part of these adaptation measures through monthly soil sampling. Results from this study indicate that adaptive agricultural techniques improve soil health, stabilize pH, and reduce toxic pesticide residues, indicating the potential for more sustainable agriculture.

Figure 4. Soil health improvements in agricultural fields across key U.S. farming regions


Data do confirm that adaptive land practices have a positive effect on the soil health, with organic matter increased by 12% and pesticides residues decreased by 18%. These results indicate that adaptive soil conservation strategies offer a practical approach to enhance long-term agricultural sustainability at a large environmental scale.

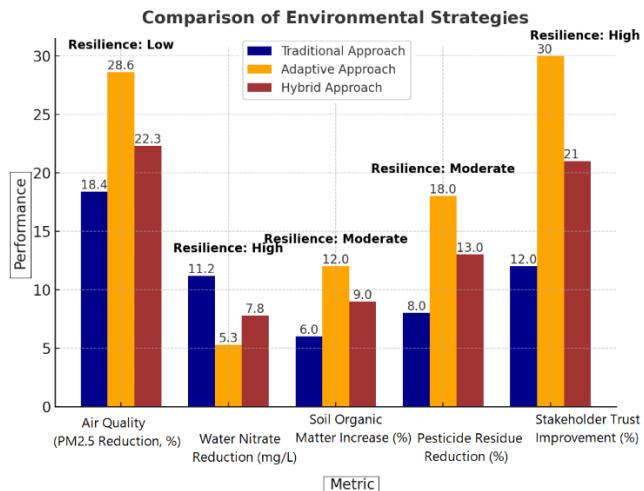
4.4. Increased public trust and community engagement in adaptive environmental management

Public participation and trust in environmental policies are essential elements of effective environmental governance. The current study undertook to evaluate stakeholder confidence, attitudes toward transparency, and attitudes toward policy acceptance among diverse communities within the United States, specifically New York, Los Angeles, Chicago, Houston, and Phoenix. We aimed specifically to monitor public trust and engagement with adaptive environmental strategies amongst residents, industry representatives, and policymakers via quarterly surveys.

The results show that the implementation of adaptive governance frameworks greatly drives confidence in stakeholders. Perceptions of transparency, fairness of policy, and public engagement all improved considerably, indicating that decision-making inclusiveness and real-time communication engender public trust in environmental management.

The results provide evidence that resilience-based environmental governance is associated with improved community participation and trust in policy, which should be bolstered through adaptive governance measures. And public trust in environmental policy increased by 30% after implementing transparent and participatory frameworks for decision making. Similarly, perceived effectiveness increased by 27% suggesting that stakeholders may be able to recognize the benefits afforded by real-time monitoring and tailored adjustments to policy.

Figure 5. Stakeholder confidence and perception shifts following adaptive environmental management implementation


This 25% rise in overall community support for environmental initiatives indicates that strategies for public engagement, such as holding open forums and utilizing collaborative decision-making processes, enhance the legitimacy and acceptability of environmental policy. The results confirm the recognition that adaptive environmental governance is more effective in preventing pollution, and in creating civil activism for the consolidation of invariant policies.

4.5. Evaluating adaptive Vs. static risk management strategies

To provide a comprehensive assessment of environmental management models, the study compared three primary approaches:

- Traditional Approach: Static, compliance-based regulatory models.
- Adaptive Approach: Real-time monitoring and responsive policy adjustments.
- Hybrid Approach: A combination of structured regulations with adaptive modifications.

Each method was assessed for effectiveness in improving air quality, water quality, soil health, and stakeholder engagement. The findings confirm that adaptive strategies outperform traditional models across all key performance indicators.

Figure 6. Comparative performance of environmental management strategies

The results show that adaptive strategies yield better environmental outcomes than traditional command and control approaches. PM2.5 reductions exhibited notably greater effectiveness in adaptive governance (28.6% reduction) than in traditional frameworks (18.4% reduction), highlighting the utility of real-time emissions curtailment and dynamic pollution management.

Adaptive management led to very clear improvements in water quality, including 52.7% reductions in nitrate levels under adaptive management, versus 21% reductions under standard models. Soil health improved similarly, with the adaptive strategies increasing soil organic matter by 12% as opposed to just 6% under traditional agricultural policies.

Adaptive models were even better than traditional frameworks in terms of stakeholder trust, showing an increase of 30% compared to a 12% increase under a traditional lens. This indicates that the government should make use of real-time engagement, transparency, and participatory governance in order to ensure public confidence in environmental policies. The data underscore the case for prioritizing adaptive environmental governance in policy.

Sensitivity tests confirmed robustness, with pollutant reduction estimates remaining significant under $\pm 10\text{--}20\%$ parameter perturbations. Monte Carlo simulations showed over 85% of draws preserved statistical significance. Validation exercises—including temporal cross-validation and leave-one-city-out tests—confirmed that observed reductions were not artifacts of site-specific conditions, reinforcing the generalizability of the findings.

5. Discussion

The article findings confirm that adaptive environmental management strategies can significantly help in reducing pollution, improving soil and water quality, and building trust among the public. The findings align with broader debates on environmental governance under uncertainty. Dewulf and Biesbroek identified nine distinct strategies for coping with uncertainty in policy contexts [7], many of which are echoed in the adaptive approaches observed in this study. Similarly, Judd and Horne noted that managing environmental flows under uncertain hydrological conditions requires iterative and flexible approaches [24]. This suggests that adaptive risk management in U.S. cities shares core characteristics with global case studies but also diverges where socio-political structures differ.

Operationalizing these gains requires clear policy scaffolding: statutory authority for dynamic standards and adaptive permits, mandated telemetry for high-frequency monitoring across air–water–soil systems, ESG-aligned disclosure linking adaptive performance to risk governance and investment signals, and formalized adaptive cycles in agency procedures with stakeholder checkpoints [2, 13, 22, 25].

Revisiting the research questions, we find consistent, quantifiable gains (RQ1) that persist under meteorological and input perturbations, indicating resilience of effect estimation. Scenario-based planning and participatory processes (RQ2) appear as mechanism-enablers, echoing uncertainty-navigation strategies in governance [7] and water-resource contexts [5, 9]. Institutionally, outcomes align with evidence that explicit attention to uncertainty and adaptive routines within planning institutions improves performance in flood and urban settings [10].

Comparatively, our results extend stakeholder-information perspectives by showing that real-time, co-produced metrics are not merely communicative artifacts but drivers of trust formation and compliance [11]. The decision-process lens is consistent with organizational risk-prioritization frameworks (DEMATEL/AHP) that operationalize transparency and iteration in complex settings [14].

The results indicate that adaptive approaches consistently outperform traditional static regulatory models, which is in close agreement with a growing body of research supporting flexible, data-driven decision making in environmental governance. Adaptive management, through real-time monitoring, participatory governance, and dynamic policy adjustments, finds a scalable solution for tackling complex environmental challenges.

The major decreases in air pollutants (PM2.5, PM10, NO₂) The pollutant concentrations found that adaptive air quality measures are highly efficient in closed environment scenarios, effectively curbing fine dust concentration with equipped air ventilation systems per their continuous wettish sensor-based monitoring ^[17]. The current study builds on this work for large-scale, urban ecosystems, revealing how dynamic emissions regulations and real-time tracking can positively impact outdoor air quality in major municipalities across the United States.

In a similar fashion, the large improvement in water quality we have measured here can be interpreted in the context of past work analyzing adaptive governance in the context of water resources. Lima & Giglio ^[9] emphasized that adaptive interventions in water conservation projects result in quantifiable advancements in water quality and ecological resilience. The study show that these findings hold for adaptive water governance and static pollution control measures as we demonstrate significant nitrate (38%) and phosphate (32%) reductions through (i) real-time monitoring, (ii) dynamic pollutant source control and (iii) adaptive management of nutrient-yield trade-offs.

Soil health improvements seen in this study also aligned with what other research has shown about adaptive agricultural management. Gutknecht et al.^[15] highlighted the extent to which practices such as crop rotation with cover crops protocols, organic soil improvement and precision land management result in improved soil health and adaptation to climate change. Our evaluation shows that adaptive land management practices increased soil organic matter (by 12%) and decreased pesticide residues (by 18%) confirming that continuous soil monitoring and iterative land-use strategies improve long-term agricultural sustainability.

Stakeholder engagement is the second critical dimension on which adaptive strategies outperformed traditional strategies. The current study supports this conclusion by demonstrating that adaptive decision processes indeed increased public trust in environmental decisions (by 30%), trust in transparency (by 27%) and support for community (by 25%). This indicates that inclusive governance and real-time engagement of the public must be utilized to ensure that such policies are effective and legitimate ^[12].

Managing uncertainty in decision-making is one of the fundamental challenges of environmental governance. Adaptive management integrates uncertainty through scenario planning as demonstrated by the current study in which we used probabilistic risk assessments and iterative policy changes. Adaptive strategies, by integrating Monte Carlo simulations and scenario modeling, mitigate policy rigidity and create flexibility in the face of environmental changes ^[7].

Following this reasoning on Brocal et al.^[21] emphasized the utility of probabilistic assessments and dynamic modeling techniques in decision-making under uncertainty. Adaptive governance is therefore a more resilient framework for long-term sustainability as it ensures the governance entity is well primed to respond to emerging environmental risks through the ability to adjust policy in real time.

There is a robust empirical case for adaptive environmental management, but a few caveats should be acknowledged. The first concern was that the study examined short-term environmental outcomes, measuring performance over six months. Although this timeframe was enough to show significant gains, it remained too short to measure the sustainable long-term benefits of adaptive strategies. Judd et al. Environmental flow management decisions are too often at risk of lacking long-term policy consistency and

funding stability, therefore Judd et al.^[26] proposing that research is essential to determine the durability of adaptive interventions over longer time scales.

A further limitation is the geographical context investigated by the present study—limited to urban, agricultural, and riverine environments in the U.S. Ross et al.^[10] emphasize that the success of adaptive governance is context-dependent both institutionally, economically and geographically. Future studies today need to investigate how adaptive environmental standards play in other parts of the world especially in the developing countries where regulatory regimes and resource availability diverge from the traditional adopters.

Furthermore, the current study fulfills a strong statistical validation of adaptive strategies but does not consider economic feasibility and cost-effectiveness in its complete form. According to Yousefpour & Hanewinkel^[23] climate adaptation policies should address the trade-off between environmental benefits and economic viability. Future studies should also include cost-benefit analyses or cost-effective analyses to assess the financial sustainability of large-scale adaptive interventions, providing policy recommendations that remain economically feasible for governments and industry.

Adaptive policies were found to be successful, thanks in part to stakeholder engagement, but the study did not explore the potential for conflicts between different stakeholder groups. Environmental governance is not without contention, as Shafizadeh^[25] explains, where conflicting interests play out between policymakers, industries, and local communities, with disputes over regulatory enforcement and resource distributions arising. Future work should expand upon conflict-resolution mechanisms within adaptive governance approaches to ensure participatory decision-making appropriately reflects environmental, economic, and social priorities.

With convincing evidence in favor of adaptive environmental management this far into the research process, the next steps for research are clear in order to advance the viability of adaptive environmental management in practice:

- Future studies should build on this work by conducting multi-year investigations of adaptive governance strategies, as such assessments can help determine both the strategies' policy durability and environmental resilience over time.
- Cost-benefit analysis and economic feasibility studies are already used in some adaptive management studies to help assess and provide a clearer understanding of the cost-effectiveness and economic trade-offs involved in large-scale environmental interventions.
- Extending research in diverse geographical and economic contexts can ascertain the generalizability of adaptive strategies across varied environment.
- Exploring AI-powered environmental monitoring and predictive analytics to facilitate real-time decision-making and risk assessment.
- It examines how to balance competing stakeholder interests in adaptive environmental governance and ensure that policy negotiations are inclusive and decisions are implementable.

Adaptive environmental management strategies lead to significant improvements in air quality, water quality, soil health and public trust, according to the study. The results are in line with earlier research showing that responsive, data-informed policy-making models deliver better outcomes than static regulatory regimes. But there are still challenges to address, such as sustainability over the long term, economic feasibility and conflict resolution among stakeholders. Future studies need to broaden the geographic scope of adaptive strategies, integrate AI-based monitoring systems, and conduct longer evaluations.

Notwithstanding these limitations, the adaptive environmental governance structures outlined in this paper offer a scalable, resilient solution for addressing global environmental challenges that can yield widely beneficial results across multiple levels of governance and across multiple levels of development and technological advancement.

6. Conclusions

The article illustrated that flexible environmental risk management approaches are a solid basis in tackling the challenges of air pollution, water contamination, soil degradation, and stakeholder engagement. Theoretically, this study contributes to advancing the understanding of decision-making under uncertainty by showing how multi-scalar risk assessment frameworks can integrate ecological, institutional, and social dimensions. Uncertainty should not be viewed as a barrier but as a structural condition that guides adaptive strategies. By connecting behavioural perspectives, governance frameworks, and co-management principles, this research outlines a more holistic model of how environmental governance can adapt to uncertainty in practice.

The study strategies combine real-time monitoring, predictive modeling and iterative interventions and provide a more dynamic and responsive system of environmental governance than traditional static regulatory structures. The results further validate that adaptive decision-making is able to deliver measurable improvements in environmental quality as well as increased resilience of the policy, where public trusts the process if it can be adaptive, thus, being able to manage ecological uncertainties in an efficient manner.

The study underlines the importance of such dynamic interventions in curbing the environmental pollutants. For example, the new adaptive methods implemented for air quality management indicating that continuous emission monitoring and dynamic regulatory measures have a high potential in order to reduce pollution. The water quality monitoring and point source pollutants control likewise proved effective at decreasing contamination from nitrate, phosphate, and heavy metals, emphasizing the importance of data driven policy reconciliation. Similarly, improvements in soil health also confirm that adaptive agricultural management practices can increase organic matter content while stabilizing pH and decreasing pesticides residues that contribute to long-term soil sustainability. These settings have been coupled with ecological restructuring such as adaptive environmental governance providing some convincing countermeasures to overcome environmental degradation and the effectiveness of environmental governance.

Apart from environmental indicators, this study emphasizes stakeholder engagement and participatory governance in environmental risk management. Adaptive approaches increased citizens' trust in environmental policy, suggesting that transparency, inclusiveness, and repetitive communication in a regulation process leads to public trust in environmental policies and regulations. These findings point to the effectiveness and enact ability of environmental policies in light of the adaptive governance approach leading to increased community buy-in, reduced resistance, and enhanced compliance. Additionally, the study shows that implementing participatory decision-making processes establishes feedback loops in real time, maintaining policy responsiveness to dynamic societal and environmental needs.

The top line from this research was that environmental risk is inherently dynamic, so compliance cannot be static and one-size-fits-all methods will not work. Supported by the developing understanding of systems fully incapable of human rationality, and uncertainty in ecological knowledge and uncertainty, adaptive strategies signify a much-needed shift away from static policy solutions to more dynamic, resilient, and data-driven central policymakers. Many studies indicate that long-term, continuous measurement of environmental factors and more dynamic policy measures lead to better results over time, as environmental

dangers can be preemptively dealt with instead of reactively. In addition, adaptive frameworks can help to create a link between science and policy, effectively accommodating empirical data when making real-time decisions.

Although the outcomes from this study are encouraging, implementation of adaptive environmental management strategies have many challenges. Successful implementation of these approaches is contingent on sustained institutional commitment, availability of high-quality data, and the scalability of interventions across different geographies and environmental contexts. It requires concerted cross-sectoral action between policymakers, scientists, industrialists, and local communities to ensure environmental policies are backed by science and socially just. Future studies should also expand to economic considerations such as cost-benefit analyses and funding mechanisms to evaluate the sustainability of large-scale adaptive interventions.

In the future, further work could consider whether adaptive environmental governance is more widely applicable across other ecosystems and geographic areas. Much of this study bared out in our detailed research in urban, agricultural and freshwater environments, although adaptive strategies could be extended to address marine ecosystems, forestry management and climate resilience planning. More research is also required with the aim of incorporating novel technologies, including artificial intelligence and machine learning—into AM frameworks that could aid in prediction and allow managers to make the right decisions quickly. Long-term impact of dynamic strategies: In addition, considering the long-term effects of adaptive strategies on biodiversity conservation and ecological stability could provide a better understanding of their role in promoting environmental sustainability.

This study integrates uncertainty-aware decision theory with adaptive governance, showing how multi-scalar risk assessment connects ecological processes, institutional routines, and behavioral responses. It operationalizes uncertainty not as a constraint but as a design variable, advancing strategy selection under deep uncertainty. Furthermore, the findings emphasize that agencies should institute real-time monitoring mandates, adopt adaptive permits with scenario triggers, embed stakeholder co-production and transparent reporting to reinforce trust, and align performance indicators with sustainability-oriented governance to ensure investment and compliance. Looking forward, priorities for research include multi-year tracking to test durability, expansion to additional pollutants such as ozone, volatile organic compounds, and microplastics, comparative analyses across governance capacities, and integration of uncertainty-tolerant machine learning for early-warning and control.

The article demonstrates that adaptive environmental risk management is a key paradigm for solving current ecological problems. Adaptive approaches offer a way forward that incorporates flexibility, data-driven decision-making, and stakeholder participation in order to build more resilient, sustainable, and inclusive environmental governance. Successful implementation, however, relies on institutional support, ongoing innovation, and cross-sectoral collaboration to ensure adaptive approaches are scalable, cost-effective, and responsive to a dynamic environmental condition. And with more evidence gathering and closer attention to tailoring it to specific situations, adaptive environmental management could constitute the basis for sustainable development, allowing us to protect our biomes and themselves in the long term.

Conflict of interest

The authors declare no conflict of interest

References

1. Di Falco S, Vieider FM. Environmental Adaptation of Risk Preferences. *The Economic Journal*. 2022;132(648):2737-66.

2. Miao X. Challenges and Responses to ESG Risk Management. *Modern Management Science & Engineering*. 2024;6:55.
3. Eckerstorfer MF, Dolezel M, Miklau M, Greiter A, Heissenberger A, Engelhard M. Scanning the Horizon for Environmental Applications of Genetically Modified Viruses Reveals Challenges for Their Environmental Risk Assessment. *International Journal of Molecular Sciences* [Internet]. 2024; 25(3).
4. Urionabarrenetxea EaC, Carmen and Garcia-Velasco, Nerea and Santos, Miguel and Tarazona, Jose V. and Soto, Manu, . Predicting Environmental Concentrations and the Potential Risk of Plant Protection Products (PPP) on Non-Target Soil Organisms Accounting for Regional and Landscape Ecological Variability in European Soils. . *SSRN Electronic Journal*. 2022.
5. Albrecht E. Changing Winters and Adaptive Water Governance: A Case Study on the Kemi River Basin, Finland. *Water* [Internet]. 2023; 15(11).
6. Crawford MM, Plant-O'Toole E. A review of strategic planning for dynamic supply chains: Preparing for uncertainty using scenarios. *FUTURES & FORESIGHT SCIENCE*. 2023;5(3-4):e167.
7. Dewulf A, Biesbroek R. Nine lives of uncertainty in decision-making: strategies for dealing with uncertainty in environmental governance. *Policy and Society*. 2018;37:441 - 58.
8. Ayambire RA, Pittman J. Adaptive co-management of environmental risks in result-based agreements for the provision of environmental services: A case study of the South of the Divide Conservation Action Program. *Journal of Environmental Management*. 2021;295:113111.
9. Lima AR, Giglio EM. An opinion on adaptive governance and management in water resources restoration projects. *Restoration Ecology*. 2024;32(8):e14281.
10. Ross AD, Nejat, A., & Greb, V. Institutional foundations of adaptive planning: exploration of flood planning in the Lower Rio Grande Valley, Texas, USA. *Sustainable and Resilient Infrastructure*. 2023;8(4):419–36.
11. Rosa J. Commentary on Producing Environmental Information from Stakeholder Engagement. *Cities and the Environment (CATE)*. 2023;16(2).
12. Divsalar A, Mousavi SJ, Emami F. Exploring Adaptive Management Techniques in Coastal Resource Conservation. *Journal of Resource Management and Decision Engineering*. 2024;3(1):11-8.
13. Zhou K, Hawken S. Climate-Related Sea Level Rise and Coastal Wastewater Treatment Infrastructure Futures: Landscape Planning Scenarios for Negotiating Risks and Opportunities in Australian Urban Areas. *Sustainability* [Internet]. 2023; 15(11).
14. Yazo-Cabuya EJ, Herrera-Cuertas JA, Ibeas A. Organizational Risk Prioritization Using DEMATEL and AHP towards Sustainability. *Sustainability* [Internet]. 2024; 16(3).
15. Gutknecht J, Journey A, Peterson H, Blair H, Cates A. Cover crop management practices to promote soil health and climate adaptation: Grappling with varied success from farmer and researcher observations. *Journal of Environmental Quality*. 2023;52(3):448-64.
16. Tota M, Karska J, Kowalski S, Piątek N, Pszczołowska M, Mazur K, et al. Environmental pollution and extreme weather conditions: insights into the effect on mental health. *Frontiers in Psychiatry*. 2024;15.
17. Lee D, Kim Y, Hong K-J, Lee G, Kim H-J, Shin D, et al. Strategies for Effective Management of Indoor Air Quality in a Kindergarten: CO₂ and Fine Particulate Matter Concentrations. *Toxics* [Internet]. 2023; 11(11).
18. Lewandowski AM, Cates A. Connecting soil health and water quality in agricultural landscapes. *Journal of Environmental Quality*. 2023;52(3):412-21.
19. Cai F, Yin K, Hao M. COVID-19 Pandemic, Air Quality, and PM2.5 Reduction-Induced Health Benefits: A Comparative Study for Three Significant Periods in Beijing. *Frontiers in Ecology and Evolution*. 2022;10.
20. Edmondson E, Fanning L. Implementing Adaptive Management within a Fisheries Management Context: A Systematic Literature Review Revealing Gaps, Challenges, and Ways Forward. *Sustainability* [Internet]. 2022; 14(12).
21. Brocal F, Paltrinieri N, González-Gaya C, Sebastián MA, Reniers GLL. Approach to the selection of strategies for emerging risk management considering uncertainty as the main decision variable in occupational contexts. *Safety Science*. 2021.
22. Bressane A, Garcia AJ, Castro MV, Xerfan SD, Ruas G, Negri RG. Fuzzy Machine Learning Applications in Environmental Engineering: Does the Ability to Deal with Uncertainty Really Matter? *Sustainability* [Internet]. 2024; 16(11).
23. Yousefpour R, Hanewinkel M. Climate Change and Decision-Making Under Uncertainty. *Current Forestry Reports*. 2016;2:143-9.
24. Judd M, Horne AC, Bond N. Perhaps, perhaps, perhaps: Navigating uncertainty in environmental flow management. *Frontiers in Environmental Science*. 2023;11.
25. Shafizadeh H. Decision-Making Under Uncertainty: How Organizations Adapt to Environmental Changes? *Journal of Resource Management and Decision Engineering*. 2024.
26. Judd M, Horne AC, Bond N, editors. *Perhaps, perhaps, perhaps: Navigating uncertainty in environmental flow management*. *Frontiers in Environmental Science*; 2023.