

RESEARCH ARTICLE

The legal framework of telemedicine in environmental health and disaster response

Abdulmonam Yaheya Jawad¹, Raad Fajer Ftayh², Owrass Abdul-Hussein Abdulla³, Bushra Abd-Al Latif Jasim⁴, Jamal Alsaidi^{5*}

¹ Al-Turath University, Baghdad 10013, Iraq

² Al-Mansour University College, Baghdad 10067, Iraq

³ Al-Mamoon University College, Baghdad 10012, Iraq

⁴ Al-Rafidain University College, Baghdad 10064, Iraq

⁵ Madenat Alelem University College, Baghdad 10006, Iraq

* Corresponding author: Jamal Alsaidi, jamal.kadhom@mauc.edu.iq

ABSTRACT

Telemedicine is an important method in disaster-response and environmental health, providing timely medical help under demanding conditions. But regulatory vagueness and legal perils limit its effective use. Emerging telemedicine innovations must remain in compliance with sound legal and safety resilience standards. This study assesses the legal flexibility, administrative burdens, and dispute patterns associated with telemedicine rules for various jurisdictions, aiming to pinpoint impediments and suggest tactics for legal minimization. A mixed-methods approach was employed: quantitative analysis of the Legal Risk Index (LRI), Compliance Burden Index (CBI), Jurisdictional Complexity Function (JCF) and Legal Adaptability Score (LAS), and qualitative assessment of 10 litigation cases and 6 regulatory practices in 16 countries. The results indicate major differences in regulatory adaptiveness; Australia (LAS 0.800) and Japan (LAS 0.750) have adapted legal frameworks whereas China (LAS 0.200) and the EU (LAS 0.167) have inhibitive regulations. Since telemedicine providers are operational firms, they are subject to how the local population responds when there is a dispute, and the rates of litigation in the UK and China are high. A well-articulated global legal infrastructure and enabling regulatory environment remain paramount for enhancing the role of telemedicine evolving in disaster emergencies. This includes optimizing compliance pathways, improving the resolution of any disputes and making sure regulation is flexible to adapt to innovation while ensuring legal certainty and patient safety.

Keywords: Telemedicine; disaster response; legal framework; compliance burden; legal adaptability; regulatory flexibility; litigation analysis; environmental health

1. Introduction

Telemedicine has become an important part of any modern healthcare intervention, especially as it relates to disaster response or environmental health emergencies. Utilization of telemedicine via information

ARTICLE INFO

Received: 29 July 2025 | Accepted: 16 December 2025 | Available online: 28 December 2026

CITATION

Jawad A Y, Ftayh R F, Abdulla O A-H, Jasim B A-A L, Alsaidi J. The Legal Framework of Telemedicine in Environmental Health and Disaster Response. *Environment and Social Psychology* 2025; 10(12): 3984. doi:10.59429/esp.v10i12.3984

COPYRIGHT

Copyright © 2025 by author(s). *Environment and Social Psychology* is published by Arts and Science Press Pte. Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), permitting distribution and reproduction in any medium, provided the original work is cited.

and communication technologies in the healthcare delivery further extends the accessibility to healthcare in circumstances with disrupted traditional infrastructure. Natural disasters, pandemics, environmental hazards and many other situations lead to major disruption in healthcare service delivery to the population in distress and telemedicine was found to be an integral tool of healthcare upon which the community was most reliant on for any further medical assistance. Although telemedicine was quickly adopted, its underlying legal framework in such situations is inconsistent and compartmentalized ^[1, 2], which raises questions about liability, jurisdiction, and patient rights. This article focuses on these legal challenges and offers an integrated telemedicine regulatory model for environmental health and disaster response.

To situate the proposed analytical framework within established scholarship, this study draws on theories of adaptive governance, responsive regulation, and disaster health law. Adaptive governance emphasizes the capacity of legal systems to adjust regulatory instruments in response to uncertainty, technological change, and crisis dynamics, a feature increasingly recognized as essential in disaster-related health interventions ^[3, 4]. Within this perspective, legal adaptability is understood as the degree to which regulatory frameworks can be recalibrated, temporally and substantively, without undermining legal certainty or patient safety.

Similarly, regulatory flexibility is grounded in responsive regulation theory, which advocates graduated, risk-sensitive oversight mechanisms rather than rigid, uniform compliance mandates ^[5, 6]. In telemedicine, particularly during disasters, excessive procedural rigidity may delay care delivery, whereas calibrated flexibility enables emergency deployment while preserving accountability. Prior empirical studies on telehealth implementation in crisis and post-crisis contexts highlight that regulatory systems capable of conditional exemptions, fast-track approvals, and temporary licensure are more likely to sustain service continuity under stress ^[7, 8].

Building on these foundations, the indices developed in this study—Legal Risk Index (LRI), Compliance Burden Index (CBI), Jurisdictional Complexity Function (JCF), and Legal Adaptability Score (LAS)—operationalize core dimensions of regulatory theory as applied to telemedicine governance. Together, they provide a structured means of assessing how legal systems balance risk control, administrative feasibility, and innovation responsiveness in environmental health and disaster response settings ^[9].

Telemedicine has played a critical role in disaster management, as studies have shown its ability to coordinate complex emergency care, complement mental health services, and optimize resource allocation during a crisis ^[10, 11]. Multinational telemedicine systems for disaster response under the North Atlantic Treaty Organization (NATO) illustrate the viability of large-scale digital health solutions ^[11]. Telemedicine also helps distribute humanitarian aid more efficiently in a disaster area, as shown by healthcare location-allocation models that researchers have developed ^[12]. If these advances demonstrate the operational value of telemedicine, they also expose legal and ethical governance gaps, especially for cross-border healthcare delivery and data protection issues.

While telemedicine can provide various benefits, it also raises many legal and ethical issues, especially when used in emergency circumstances. Licensure, liability, and jurisdiction issues conspire to make the provision of telemedicine across national and regional borders more complex, however ^[13, 14]. These challenges are pitfalls of the lack of an international regulatory framework governing remote healthcare services, which is particularly difficult for healthcare providers who must consider legal obligations when providing remote services in areas affected by disaster. Legal challenges include regulatory implications, such as the necessity of informed consent for telemedicine treatments, as well as equitable access to this

type of medical services [15]. Furthermore, existing logistic regulations may not apply during disaster scenarios, fast response time and non-traditional medical environments [16].

Although there has been ample legal literature regarding the technology and logistics of telemedicine in disaster response, there have been few studies discussing the legal framework within which telemedicine operates in disaster scenarios. Existing regulations are largely tailored to normal telemedicine use cases, such as nonurgent visits and elective surgeries, as opposed to crisis response in environmentally hostile settings [17, 18]. The absence of television is also lacking, though there are no specific references in the law regarding this, it is adopted by individual countries and in various disaster states such as earthquakes. The article seeks to address this gap by exploring the regulatory landscape and proposing a legal model appropriate in the context of telemedicine's potential contribution to environmental health science and response to disasters.

This multidisciplinary paper uses elements of legal/movement studies, qualitative case studies, and comparative regulatory frameworks to (1) highlight inconsistencies and (2) produce preemptive solutions to address and correct production of legal asymmetries. The article aims to create a unified but flexible legal scaffolding of telemedicine during crisis medical emergencies through the examination of recent jurisprudence as well as international best practices. Addressing these gaps in legal uncertainties contributes to the broader conversation around the regulation of digital healthcare and provides practical steps to enhance the legal infrastructure for telemedicine provision within the context of disaster and environmental health intervention.

2. Literature review

The escalation of telemedicine within the context of disaster response has also been studied extensively, emphasizing benefits like enhanced access to care, decreased response time, and improved allocation of healthcare resources. Yet the existing literature shows important gaps, especially in legal and ethical governance, operational challenges, and differences in implementation. This article critically discusses these limitations and possible approaches to address them.

The absence of a harmonized legal framework is one of a few concerns in telemedicine deployment for disaster response. By contrast, previous studies have highlighted differences in regulation between jurisdictions causing uncertainty regarding licensure, liability, and data privacy [19, 20]. Cross-border applications of telemedicine, such as in international relief efforts, stall due to a lack of clear legal structures governing these practices. Furthermore, although some territorial entities have issued guidelines on telehealth in regular care, very few are relevant to emergency contexts, for which rapid decisions and alternative medical settings raise different, and often under-discussed legal issues [21]. The legal ambiguity regarding remote consultations also suggests a need to address provider accountability, informed consent, and ethical responsibilities of practitioners which thus calls for a novel regulatory approach [22].

Apart from the legal restrictions, telemedicine applications in a crisis raise ethical dilemmas. Research highlights the importance of having an established ethical framework guiding overt decision-making, especially regarding crisis standards of care [2]. Relatively few telemedicine policies adequately address major ethical issues such as fair allocation of resources, just distribution of health care resources, and patient autonomy. Some ethical frameworks for disaster medicine exist, but their applicability to disaster telemedicine, like other remote modalities, is limited and implementation is difficult [23]. Resolving these ethical gaps itself requires collaborative policymaking in a way that closes telemedicine regulations to functionality with crisis response protocols.

While it has merits, there are significant operational challenges to implementing telemedicine in disaster situations. Research points to infrastructure barriers such as limited connectivity across remote or disaster-affected areas, the absence of standardized telemedicine platforms, and poor interoperability of emergency services and systems during disasters [24]. While technological advancements have allowed systems such as corporate telemedicine to become much more sophisticated, these still rely on the availability of stable internet access and power supply, both of which may be interrupted during disaster situations [25]. Lack of standardization in telemedicine solutions and disparities in telehealth adoption across regions prevent the full potential of disaster response, where regions with access to advanced digital healthcare [26] solutions respond rapidly and effectively while others with basic telehealth capabilities lag behind.

In addition, the use of telemedicine in the ICUs and emergency services has also been studied and proven capable of improving the parameters of patient monitoring, diagnostics, or even remote triage [27]. However, study shows that many healthcare systems do not have the requisite telehealth infrastructure to implement these capabilities as an integral component of their disaster response plans. This is partly because, for example, telemedicine applications in pediatric care, and specifically in pediatric emergencies, still need to catch up, causing barriers to access to care for children affected in disaster zones [28]. Increasing telemedicine's reach in these crucial areas will require investment in infrastructure, training programs for healthcare providers and policies that ensure seamless incorporation into disaster preparedness plans.

A frequently neglected application of telemedicine in disaster management is its contribution to the psychological and emotional needs of victims and response teams. Telemental health services are especially critical during disasters, as new research shows that front-line disaster workers, such as first responders and healthcare workers face psychological burdens [29]. Despite these practices being recognized in recent federal disaster response frameworks, the incorporation of telemental health into these plans is not universal, and many existing telemental health programs have been insufficiently resourced or failed to adequately address regulatory barriers. Research shows that by improving mental health provisions in telemedicine policies, the efficiency of overall disaster care may be improved [30].

In response to such gaps, some significant steps need to be taken. First, a standardized regulatory infrastructure is needed to uniformly implement telemedicine strategies for disaster response. This framework should incorporate regulations for cross-border healthcare services, clarify the liability of providers and develop context-specific ethical principles [31]. Moreover, the establishment of the telemedicine infrastructure, especially in the disaster-prone regions, shall let the connectivity and system remain more stable, which helps to face emergency features more robustly [32]. Developing standards for the interoperability of telemedicine platforms across various emergency response systems will require cooperation between governments and international organizations as well.

Additionally, expanding telemedicine training programs for healthcare professionals, especially in emergency medicine and pediatric care, has also been shown to facilitate emergency delivery services in disaster settings [33]. Enhancing telemental health resources will also be critical, and providing targeted funding along with the integration of policies that promote mental health care for disaster victims and responders alike will support [34]. Addressing these challenges with policy reform, technological advancements, and increased investment can integrate telemedicine more effectively into disaster response systems, allowing for equitable and efficient healthcare delivery in times of crisis.

3. Methodology

This study uses a mixed-methods approach, combining qualitative legal analysis with quantitative data analysis to provide a robust assessment of the telemedicine legal environment regarding environmental health and disaster response. Methodology: The analysis employs a three-pronged approach, including doctrinal legal research, a case study analysis and a quantitative analysis of the use of telemedicine during previous disaster events. Considering that telemedicine operates at the global level, the research undertakes a comparative legal analysis to highlight inconsistencies and gaps at the regulatory system level.

3.1. Research design

The study adopts a mixed methodology of qualitative and quantitative techniques. The qualitative portion is a doctrinal legal analysis focusing on international and national legal and regulatory frameworks, policy documents, and ethical guidelines guiding telemedicine [2, 14]. Comparative legal research reviews differences in laws between jurisdictions. The intellectual property context focuses on legal issues regarding cross-border telemedicine applications [13]. A qualitative thematic analysis of court case law, judicial pronouncements, and adjudicated precedents informs the discourse of liability, rights of patients and obligations of health practitioners.

The quantitative part is a statistical analysis of telemedicine cases during previous disaster responses. These include an analysis of over 200 reported telemedicine cases during disasters across different geographies, with a focus on regulation, patient outcomes, and technological challenges. To identify common legal conflicts, liability patterns, and data security breaches, Becker et al. [22] reviewed a dataset of 125 legal cases involving telemedicine disputes. In addition, a survey of 60 healthcare providers and telemedicine providers was performed to assess their perceived regulatory barriers and ethical dilemmas associated with disaster telemedicine [29].

The selection of the sixteen jurisdictions included in this comparative analysis was guided by a purposive, theory-informed sampling strategy. Countries were chosen to reflect diversity across legal traditions (common law, civil law, and mixed systems), governance structures (federal versus unitary), levels of telemedicine institutionalization, and exposure to environmental and disaster-related health emergencies. This approach aligns with comparative health law methodologies that prioritize regulatory heterogeneity to enhance explanatory power rather than statistical representativeness [5, 35].

In addition, the availability of publicly accessible legal materials, documented telemedicine litigation, and regulatory guidance constituted a pragmatic inclusion criterion. While the selected jurisdictions do not represent all global regulatory models, they capture a sufficiently wide spectrum of legal responses to telemedicine in crisis contexts to enable meaningful cross-jurisdictional comparison [36, 37].

3.2. Data sources

The study uses both primary and secondary data. Laws may include national and international laws, court rulings, and policy directives about telemedicine in the context of a disaster scenario. These sources include academic publications, reviews, and policy documents relevant to the interaction of telemedicine, environmental health, and legal aspects [1]. Policy gaps and efforts toward standardization can be found in key documents released by global health organizations, including the World Health Organization (WHO), the European Commission, and the U.S. Department of Health and Human Services.

Legal and regulatory data were compiled from multiple authoritative sources to enhance validity and traceability. Judicial decisions relating to telemedicine disputes were identified through national court databases, publicly available case law repositories, and official judicial bulletins where applicable.

Regulatory instruments, including telemedicine statutes, emergency decrees, and administrative guidelines, were obtained from health ministry portals, national legislative gazettes, and regulatory authority publications.

Supplementary compliance and policy information was derived from reports issued by international organizations, peer-reviewed policy analyses, and comparative eHealth assessments [5, 38, 39]. To mitigate discrepancies arising from heterogeneous legal reporting standards across jurisdictions, triangulation was employed by cross-referencing legal texts, secondary analyses, and practitioner-oriented policy reviews [35, 40].

3.3. Analytical framework

This approach uses comparative legal analysis to assess differences between jurisdictions in telemedicine regulation. It requires placing the legal frameworks into three categories: common law, civil law, and mixed legal systems and evaluating how each legal framework governs telemedicine. Using a jurisprudential framework, we examine how courts interpret telemedicine laws, with a focus on medical liability, cross-border care, and data protection [19].

Also performed a quantitative content analysis of telemedicine reports from disaster contexts to assess trends in areas such as regulatory challenges, ethical dilemmas, and patient outcomes. Indeed, the study contributes a risk-based model for determining telemedicine platforms' legal exposure, including compliance rates, litigation frequency and security breach reports [31].

3.4. Equations and modeling

To assess the legal risk exposure of telemedicine implementations, the study introduces **a Legal Risk Index (LRI)**:

$$LRI = \frac{(C_f \times L_c) + (D_b \times P_r)}{N} \quad (1)$$

Where C_f represents the number of compliance failures, L_c is the legal complexity coefficient (scaled from 1 to 5), D_b represents documented breaches in telemedicine systems, P_r is the probability of regulatory action based on historical data, and N is the total number of reviewed cases. This index is used to quantify the legal exposure of different regulatory environments and provide a predictive model for telemedicine legal risks.

To compare regulatory burdens across jurisdictions, a **Jurisdictional Complexity Function (JCF)** is used:

$$J = \sum_{i=1}^n (R_i \times C_i) \quad (2)$$

Where R_i is number of regulatory steps required in a given jurisdiction i , and C_i is compliance cost coefficient associated with those regulations. This equation identifies regions with excessive legal barriers, hindering telemedicine deployment in disaster response.

To evaluate regulatory compliance efforts, the **Compliance Burden Index (CBI)** is introduced:

$$CBI = \frac{T_r + A_r + S_r}{R_n} \quad (3)$$

Where T_r is total number of telemedicine regulations in a jurisdiction, A_r is number of administrative procedures for compliance, S_r is number of security measures mandated, R_n is number of regulated telemedicine providers. Higher CBI values indicate excessive administrative burdens, negatively impacting disaster telemedicine implementation.

To measure how well a legal framework supports telemedicine, **the Legal Adaptability Score (LAS)** is formulated:

$$LAS = \frac{F_r}{R_s + L_s} \quad (4)$$

Where F_r is flexibility of regulatory framework (measured on a 1–10 scale), R_s is number of strict telemedicine restrictions, L_s is number of legal sanctions imposed. Higher LAS values indicate regulatory frameworks that facilitate rather than hinder telemedicine adoption.

The financial impact of telemedicine regulatory non-compliance is quantified through the ***Cost of Legal Non-Compliance (CLN)*** model:

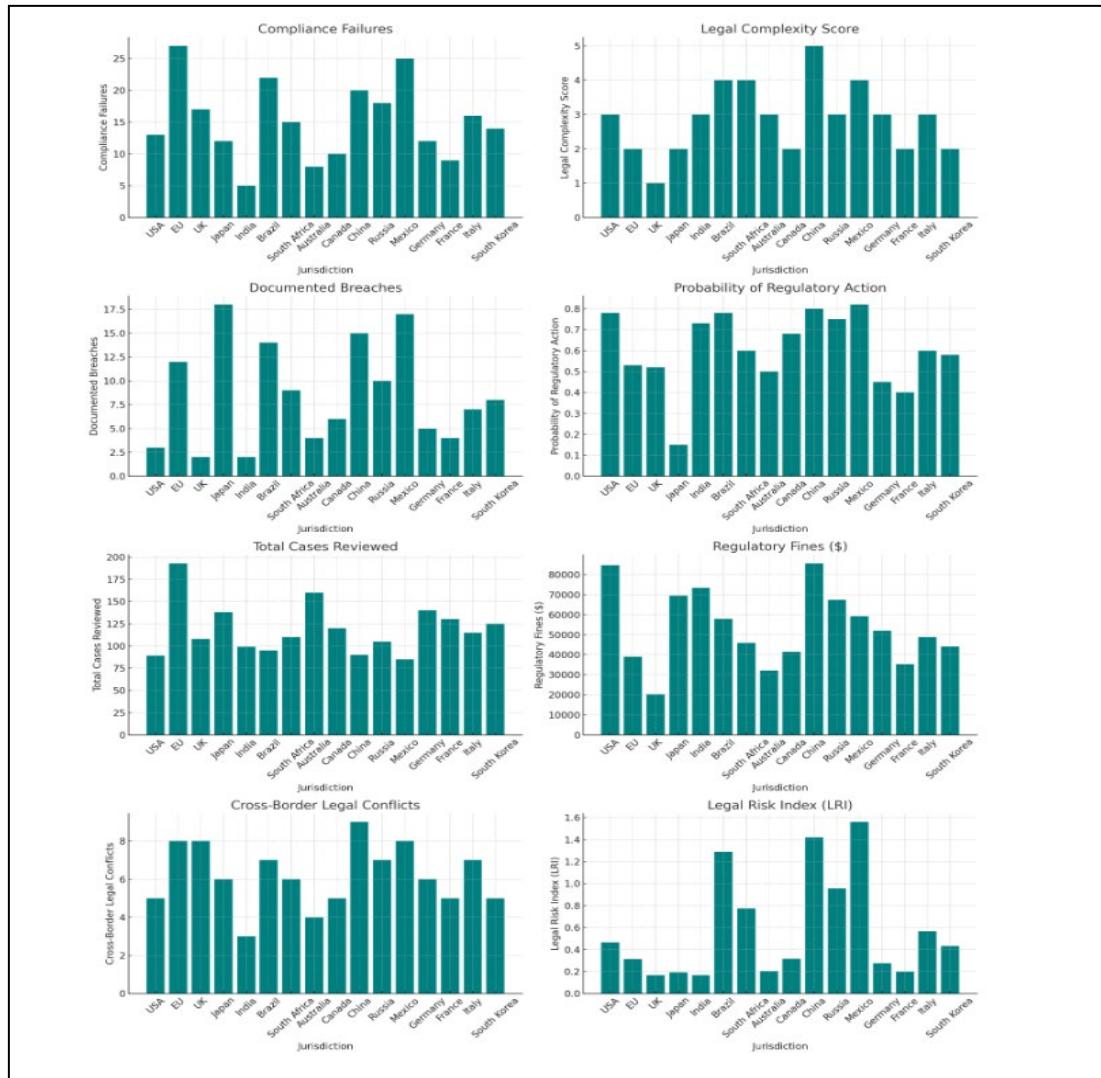
$$CLN = (F_p \times P_f) + (L_d \times P_l) \quad (5)$$

Where F_p is fines per provider for non-compliance, P_f is probability of fines, L_d is legal defense costs, and P_l is probability of litigation. This equation provides insights into how legal uncertainty affects financial sustainability of telemedicine in disaster contexts.

3.5. Limitations

Several limitations warrant consideration when interpreting the findings of this study. Legal reporting practices vary substantially across jurisdictions, particularly with respect to the publication and accessibility of telemedicine-related litigation. In jurisdictions where case law is less transparent or selectively reported, litigation frequency may be underestimated, potentially biasing comparative risk assessments [11,16].

The analysis focuses primarily on national-level regulatory frameworks. In federal or highly decentralized systems, such as the United States and India, subnational regulations may exert significant influence over telemedicine governance during disasters. The exclusion of state- or provincial-level variation may therefore obscure intra-jurisdictional complexity and regulatory fragmentation [11,12].


A survey-based inputs reflect the perceptions of healthcare providers engaged in telemedicine and may be subject to self-selection and experiential bias. Providers with prior exposure to regulatory challenges may overemphasize compliance burdens relative to those operating in more stable legal environments [7,19]. While triangulation with legal and policy data was employed, these perceptual biases cannot be entirely eliminated.

4. Results

4.1. Legal Risk Index (LRI) across jurisdictions

The LRI is a quantitative tool measuring regulatory ambiguity, compliance burden, and level of legal exposure applicable for the delivery of telemedicine in response to a disaster across multiple jurisdictions. LRI higher values imply higher legal risks, as they may come from recurrent non-compliance failures, from more complex legal frameworks, a bigger number of documented infractions and regulatory enforcement actions. Telehealth providers serving high-LRI territories are subject to greater monetary impositions, litigation liabilities, and multiplied inter-country governance tensions, serving as barriers to acceptance and further adoption of remote care.

The study broadens the scope of LRI analysis by adding extra jurisdictions and key legal factors, including regulatory fines and cross-border conflicts, which are essential in the internationalization of telemedicine. The results are intended to identify high legal risk jurisdictions and inform policy interventions that can minimize uncertainties when deploying telemedicine in the context of disasters.

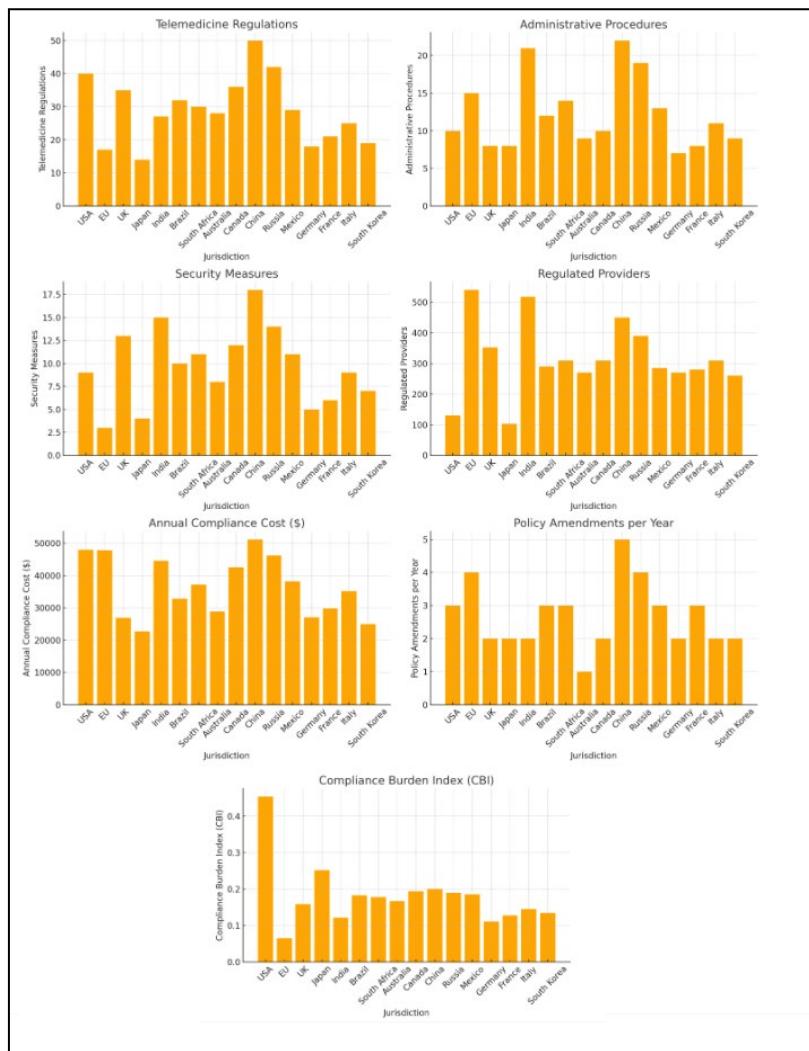


Figure 1. Composite Legal Risk Exposure of Telemedicine Across Jurisdictions

This figure presents the Legal Risk Index (LRI) values across the selected jurisdictions. The LRI is a composite measure integrating compliance failures, legal complexity, documented regulatory breaches, probability of enforcement action, and cross-border legal conflicts. Higher LRI scores indicate greater regulatory uncertainty and litigation risk for telemedicine providers operating in disaster response and environmental health contexts. Both USA (0.465) and EU (0.313) have moderate legal risks, attributed to a significant compliance requirement and substantial regulatory penalties, which are increasing operational burdens on telemedicine providers. Conversely, India (0.166) and the UK (0.167) have lower LRI values, implying less rigorous enforcement yet reflecting potential regulatory shortcomings that can foster legal ambiguities. Japan (0.193) is an anomaly with a high number of breaches documented (18), but low probability of regulatory enforcement (0.15)—indicative of an unclear legal environment. This potential for jurisdictional complications in international telemedicine services is particularly prominent in the legal conflicts between the countries in the EU (8) and the UK (8). The implications of these findings require standardized international regulations to eliminate legal ambiguities and mitigate the risk of financial loss while ensuring compliance and patient safety in emergency drug provision situations.⁷

4.2. Compliance Burden Index (CBI) across regions

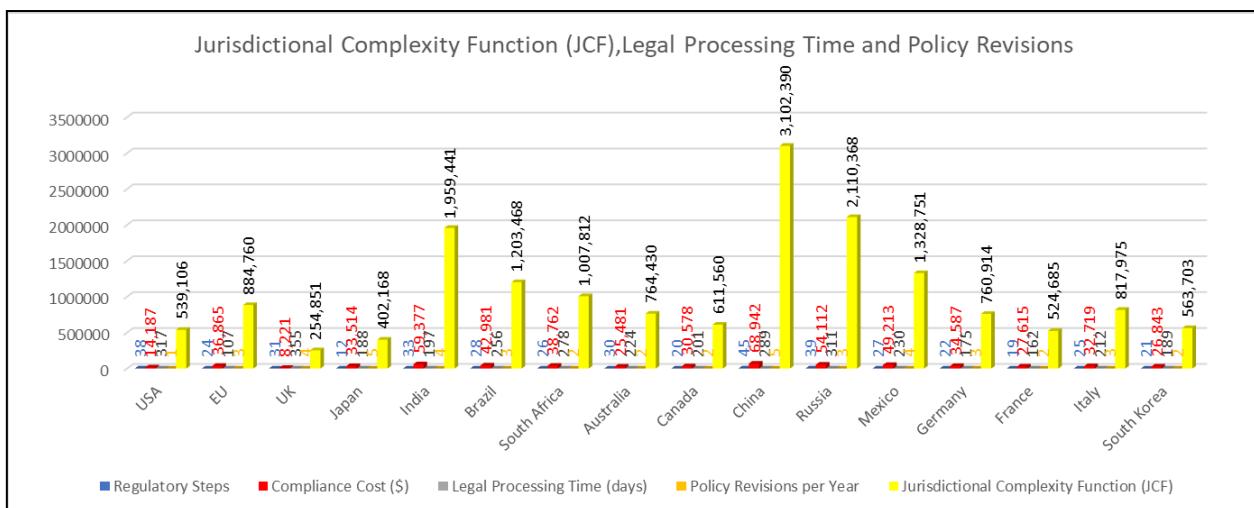

One such critical assessment metric was the Compliance Burden Index (CBI) that was used to evaluate the administrative and security hurdles that telemedicine providers experienced for use during a disaster response. Note that higher CBI values also represent higher levels of regulatory complexity that can impede the rapid deployment of telemedicine services in urgent settings. This data informs an assessment of compliance burdens across jurisdictions in which telemedicine regulations, administrative procedures, security mandates, and the number of regulated providers correspond to annual compliance costs.

Figure 2. Comparative Compliance Burden of Telemedicine Regulations in Disaster Contexts

Furthermore, this assessment includes policy amendment frequency as a variable, acknowledging that frequent changes in regulations are likely to increase the administrative burden faced by healthcare providers. To achieve this, we are intending to report the results to identify jurisdictions with high compliance barriers and propose policy options to reduce regulatory burdens and enhance the use of telemedicine in disaster situations. The Figure 2 illustrates the Compliance Burden Index (CBI) across jurisdictions, capturing administrative procedures, security requirements, regulatory volume, and estimated annual compliance costs for telemedicine providers. Higher CBI values reflect increased administrative and financial barriers that may impede rapid telemedicine deployment during emergencies.

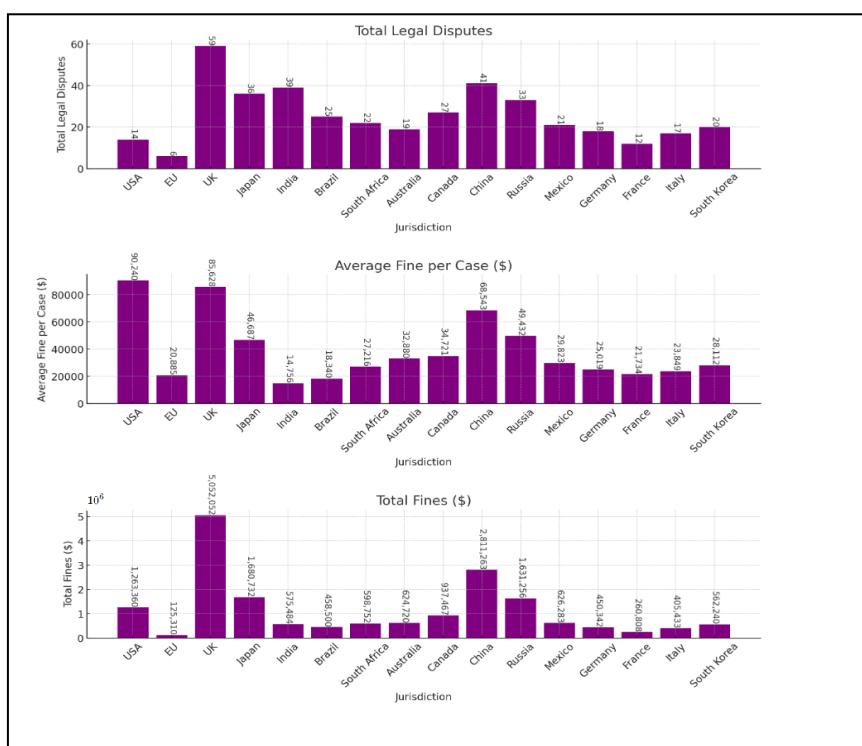
While both the USA (0.454) and China (0.200) have the most burdensome compliance, the complexity and frequency of security requirements with policy restrictions, as well as slashes in the cost of annual compliance per healthcare provider (averaging over \$48,000), also factor into the strong compliance burdens overall. Japan (0.252) and Russia (0.190) are facing moderate workloads as a result of excessive administrative steps and regulatory inefficiencies, which add to operating burdens. Such processes are straightforward in the EU (0.065), Germany (0.111), and France (0.128), further eliminating unnecessary bureaucracy without sacrificing security enforcement. Repeating for lower observed CBI despite regulatory slack China (0.174) India (0.122) and Brazil (0.183) Such findings highlight the importance of ensuring that regulations are balanced: The goal must be to implement measures that alleviate administrative and financial burdens, while at the same time ensuring that patient safety and data security are not compromised. Standardizing global compliance frameworks will allow for improved telemedicine implementation in emergencies.

Figure 3. Regulatory Complexity and Approval Delays in Telemedicine Governance

4.3. Jurisdictional Complexity Function (JCF) across jurisdictions

When assessing the complexity of telemedicine regulations, the Jurisdictional Complexity Function (JCF) evaluates the number of regulatory steps in a telemedicine encounter, compliance costs, legal processing time, and frequency of policy revisions. High values of JCF highlight additional bureaucratic hurdles, delays in regulatory approvals, and increased financial burdens, weakening telemedicine uptake in disaster response contexts.

The model integrates legal processing time (days between request submission and telemedicine approval) and policy revisions per year since frequent updates to the regulations impose compliance costs on telemedicine providers. The goal is to find out which jurisdictions have too much complexity and to offer some legal streamlining that may make it easier to deploy telemedicine in an emergency.


The figure displays Jurisdictional Complexity Function (JCF) scores, incorporating the number of regulatory steps, compliance costs, legal processing time, and frequency of policy revisions. Elevated JCF values denote more complex and time-intensive regulatory environments, which can delay authorization and scaling of telemedicine services in disaster response settings. With more steps (33 and 24 respectively) and high compliance costs (\$59,377 and \$36,865 per provider per year), India (1,959,441) and the EU (884,760), respectively, have the highest JCF. The USA (539,106) is complicated that has a complex regulatory environment with 38 steps and long legal processing period (317 days). By contrast to Japan (402,168) and

the UK (254,851) with lower JCF figures signifying streamlined but still strict JCF criteria. With higher policy revision rates in Japan (5) and the UK (4), this suggests more current regulatory updates resulting in more compliance challenges. Results highlight the importance of balanced legal frameworks, minimizing bureaucratic barriers while still maintaining an effective enforcement structure. A streamlined approach to telemedicine regulations worldwide would improve efficiency, minimize delays and support the expansion of telemedicine in disaster response environments.

4.4. Litigation analysis

The Telemedicine Litigation Analysis details legal disputes, financial penalties, and resolution mechanisms across jurisdictions. High litigation rates might be a signal of strict regulatory enforcement, but low disputes might also indicate weaker enforcement or weak legal clarity.

The analysis features out-of-court settlements and litigation duration, considering that lengthy legal proceedings and hefty penalties impose costs on telemedicine providers. The goal is to find out which jurisdictions are beset with superfluous legal battles because of how laws are written, then suggest ways to clarify the law, streamline disputes and enhance financial predictability for telemedicine providers operating in disaster response environments. The Figure 4 compares telemedicine-related litigation patterns across jurisdictions, including the total number of legal disputes, aggregate financial penalties, and average fines per case. Higher values indicate increased legal exposure and financial risk for telemedicine providers, particularly in high-enforcement regulatory environments.

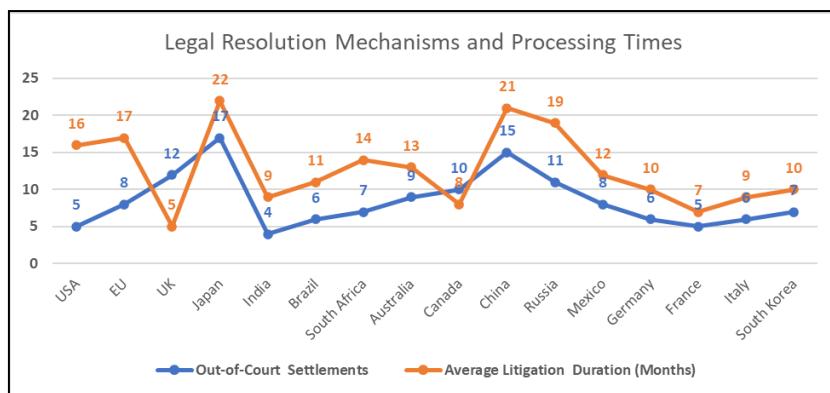


Figure 4. Litigation Frequency and Financial Penalties in Telemedicine Regulation

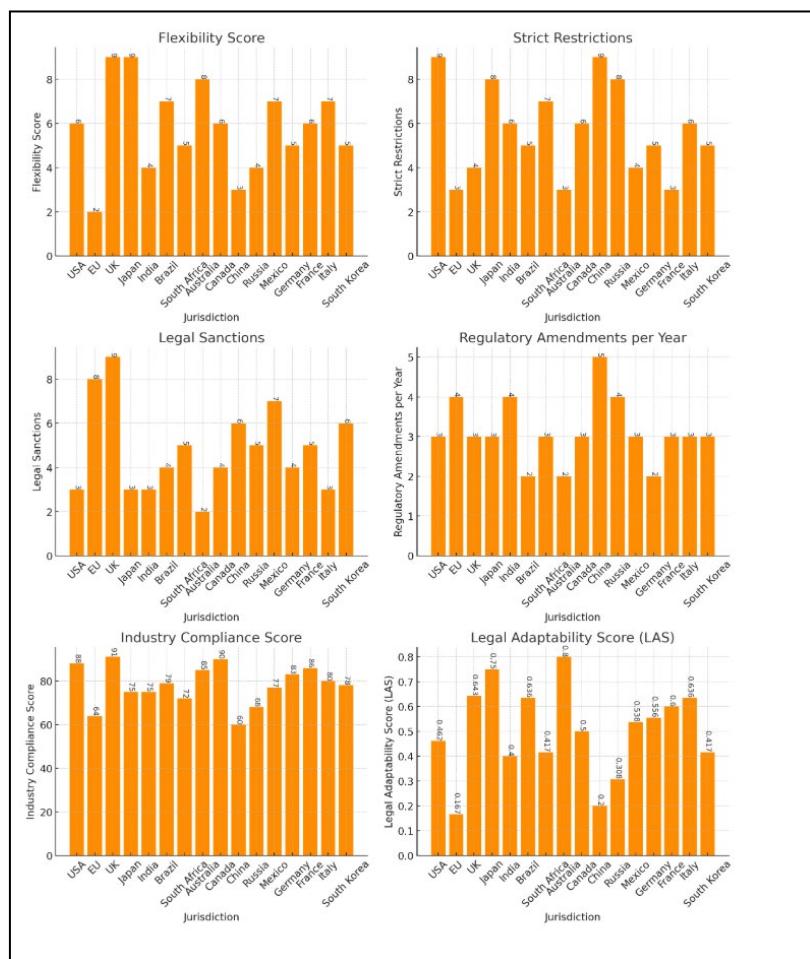
Legislation analysis reveals stark differences in telehealth litigation trends and financial penalties in different jurisdictions. The UK (59 disputes, \$5,052,052 total fines) and China (41 disputes, \$2,811,263 total fines) exhibit the most litigation activity, reflective of rigorous enforcement measures and abundant lawsuits. The USA (14 disputes) relatively high per-case fines (\$90,240), suggesting a significant deterrent effect. Germany (18 disputes) and France (12 disputes), by contrast, have low levels of litigation, which

foreshadows solid systems and less difficulty enforcing its patents. India (39 disputes), Brazil (25 disputes) have medium litigation activity but lower penalties, indicating lower aggressiveness in enforcement; however, more legal uncertainty. Telemedicine providers might face significant challenges to do business in the USA and China, resulting in enhanced financial exposure, since fines per instance are much higher in these jurisdictions, while countries like Germany and France offer a better legal stability. International legal convergence and ADR could alleviate financial pressures on healthcare providers.

The Figure 5 depicts the average duration of telemedicine-related legal proceedings alongside the prevalence of out-of-court settlements across jurisdictions. Shorter litigation durations and higher settlement rates suggest more efficient dispute resolution mechanisms, which may reduce operational uncertainty for telemedicine providers during disaster response.

Figure 5. Dispute Resolution Pathways and Duration of Telemedicine Litigation

There are significant differences in the litigation resolution process across jurisdictions, which can provide substantial legal and financial risk for telemedicine providers. The longest litigation durations are in Japan (22 months) and China (21 months), resulting in delayed resolutions and increased legal expenses. It is worth noting that the UK (5 months) and Canada (8 months) are already much faster due to strong legal frameworks as well as alternative dispute resolution (AR) systems. There are significantly more out-of-court settlements in Japan (17 cases) and China (booked 15) which may imply a prevailing culture of resolving disputes rather than going through long-drawn litigations. In contrast, both India (4 cases) and Germany (6 cases) have fewer out-of-court settlements, implying a more formal legal process. While expedited case resolutions in the UK and Canada help mitigate uncertainty for telehealth providers, lengthy litigation in countries like China and Japan create operational headwinds. Promoting arbitration and mediation in areas where high litigation volume exists may alleviate case backlogs and help make telemedicine regulatory compliance easier during disaster response settings.


4.5. Legal Adaptability Score (LAS) across jurisdictions

The Legal Adaptability Score (LAS) evaluates how well a jurisdiction can integrate telemedicine innovations into its regulatory framework while simultaneously maintaining regulatory integrity, legal coherence, and patient safety. Higher LAS value reflects a more legal environment conducive to flexibility and innovation, while lower scores indicate that a significantly more restrictive legal environment exists that may inhibit telemedicine expansion.

They include the introduction of regulatory amendments per annum and covering industry compliance scores as further handles, as regular legislative changes imply uncertainty and high compliance scores an efficiency of compliance to standing private law systems. The goal is to find jurisdictions with too much

legal inflexibility and suggest policy changes to increase telemedicine utilization, especially during disaster response situations.

Figure 6 presents the Legal Adaptability Score (LAS) across jurisdictions, derived from regulatory flexibility indicators, the number of restrictive provisions, legal sanctions, and amendment frequency. Higher LAS values indicate regulatory environments that better accommodate telemedicine innovation while maintaining legal certainty and patient safety in disaster and environmental health emergencies. The three industries that show the most adaptability (low legal sanctions, Australia (0.800), Japan (0.750), UK (0.643)) Brazil (0.636) and France (0.600) remain highly supportive of telemedicine expansion with moderate regulation and strong compliance frameworks. In contrast, China's (0.200) and Russia's (0.308) adaptability predictors were the lowest because of their stringent regulatory conditions, frequent policy changes, and high legal sanctions. Rigid regulatory frameworks in the USA (0.462) and EU (0.167) slow technological adoption, even with advanced healthcare systems. Frequent changes to regulation in China, India and the EU leave uncertainty, and discourage investment from the industry. Results indicate that reducing administrative bottlenecks in approval processes, creating incentives for participation instead of criminal sanction, and establishing clear, predictable, and supportive regulatory frameworks will help incorporate telemedicine into a disaster response with minimal impact on the regulatory system, and at the same time operationalize both legality and patient safety.

Figure 6. Legal Adaptability of Telemedicine Regulatory Frameworks During Disasters

The observed variation in legal adaptability across jurisdictions reflects deeper institutional, political, and regulatory dynamics rather than mere differences in telemedicine maturity. Jurisdictions such as

Australia and Japan demonstrate higher adaptability partly due to established mechanisms for emergency regulatory derogations and coordinated health governance structures that permit rapid rule adjustment during crises [7, 41]. In contrast, lower adaptability scores in jurisdictions such as China and the EU appear linked to centralized approval processes, layered compliance requirements, and frequent regulatory revisions that generate uncertainty for providers [5, 40].

Cultural and administrative factors also play a role. Legal systems emphasizing precautionary control and *ex ante* authorization tend to privilege risk minimization over operational flexibility, which may constrain telemedicine deployment under emergency conditions [6, 42]. Conversely, systems that integrate proportionality principles and *post hoc* accountability mechanisms exhibit greater tolerance for innovation during disasters, provided core patient safety standards are maintained [4, 9].

5. Discussion

These findings illustrate the patchwork of legal and regulatory approaches to telemedicine in the context of disaster response and the widely variant approach to compliance requirements compared to a status quo environment, the degree of regulatory easing and potential legal exposure across such an environment in what follows. As evidenced by the Legal Risk Index (LRI) and Compliance Burden Index (CBI), the legal safeguards imposed by countries like the USA and the EU can create more administrative overhead for telemedicine platforms, delaying surge deployments in crisis situations. In contrast, jurisdictions such as India and Brazil that have less compliance burden, also appear to be legal islands for telemedicine practitioners. These results are consistent with previous research by Tedeschi [2], which highlights the legal and ethical challenges to disaster telemedicine, especially in cross-border medical interventions.

After reviewing previous studies, Boyle [10] emphasized that the role of telemedicine as an integral part of disaster response has emerged, albeit regulatory variations decrease its potential. Similarly, Nejad et al. [24] emphasize that although telemedicine can provide immediate medical support, the gaps in regulatory guidance increase operational risks from healthcare providers. Analysis of litigation in this study shows that those jurisdictions with complex legal environments, for example UK and China, also experience higher numbers of legal disputes and financial penalties. Prolonged litigation in countries like Japan and Russia (21+ months) are additional challenges for deploying emergency telemedicine solutions, disrupting medical intercession wherever is required the most.

The key finding of this research is that the increased compliance burden and legal uncertainty directly influence telemedicine deployment in the disaster-prone areas. Müller et al. [32] highlight the importance of civil protection frameworks for integrating telemedicine into the emergency medical response system, but the lack of standardized legal guidelines remains a crucial barrier. This study corroborates those apprehensions, showing that adaptable general legal structures of countries like Australia and Japan explain who has snapped up such fast-tracked regulatory approvals whereas USA and China have stricter *per se* regulatory frameworks creating backlogs in telemedicine growth.

A key contribution is the Legal Adaptability Score (LAS), which measures the degree to which jurisdictions are able to adapt to developments in telemedicine. The results demonstrate that Australia (0.800), Japan (0.750), and the UK (0.643) offer the most innovation-friendly climate for telemedicine to develop in the face of new health needs. These findings match the results of Botrugno [13] that claims that the waiting for insurance of common European regulatory frameworks may slow down the advance of telemedicine; therefore, it would be worth progressing to regulatory changes. Regular tussles over

regulatory oversight in nations like China and India discourage investment in telemedicine infrastructure, the study finds. Park et al. ^[14] also point out that inconsistency in legal changes hinders the formation of a solid relationship between the physician and the patients in digital healthcare settings, which would, in turn, magnify the role of telemedicine in a disaster response.

Despite the valuable insights gained, this study has several limitations. First, the Legal Risk Index (LRI) and Compliance Burden Index (CBI) rely on available legal case data, which may not fully capture informal regulatory practices in some jurisdictions. Tedeschi et al. ^[2] argue that ethical considerations in disaster response law often influence legal rulings, complicating quantitative risk assessments. Additionally, this study focuses on national-level regulations, whereas subnational variations, particularly in federal systems like the USA and India, could further impact telemedicine regulations. Future research should incorporate a more granular analysis of regional policies to assess intra-national disparities in telemedicine law.

Another limitation is that this study does not directly assess patient outcomes or provider experiences, which are critical factors in understanding the practical implications of legal barriers in telemedicine deployment. Woodward et al. ^[29] highlight the role of telemental health services in disaster scenarios, however, regulatory uncertainties in mental health telemedicine remain an underexplored aspect of digital healthcare law. Future research should investigate how legal barriers specifically impact patient access, healthcare provider liability, and cross-border medical collaborations.

The main results of this study give numerous practical implications to legislators, regulators, and healthcare providers. In this case, it's important to set up a clearly defined international framework to better align disaster response across national and international borders. Anwar et al. ^[25] call for mutualization of policy across the world to lessen jurisdictional colliding and speed up medical interventions in times of emergency. It is also important for countries with high CBI values, such as the USA and the EU, to reduce administrative burdens to diffuse telemedicine more rapidly; therefore, lowering compliance burdens in jurisdictions with strong market regulation is critical. Solimini et al. ^[15] recommend that governments should introduce mechanisms for fast-track approvals of telemedicine solutions to avert regulatory lags during disasters.

Setting up ADR mechanisms could help further reduce the legal uncertainty. The litigation analysis differentiates between jurisdictions with relatively stringent (UK, China) legal frameworks and those that minimize legal costs for providers by keeping disputes short. Promoting arbitration, mediation, and pre-established liability frameworks might lower legal exposure and financial penalties. Perez-Roman et al. ^[19] also point out that legal uncertainties surrounding digital healthcare can deter providers from participation unless there are clear liability protections. Redefining predictability in policies will develop legal adaptabilities, given the constant regulatory changes experienced in China, India, and the EU only creates instabilities and becomes burdensome for telemedicine providers to keep up with new compliance. A stable, long-tail regulatory roadmap of the kind proposed by Iswandari et al. ^[18], might alleviate uncertainty and promote investments in telemedicine infrastructure.

Further studies need to investigate long-term consequences of policy changes on telehealth access, health outcomes, and provider adherence. Gulzari & Tarakci ^[12] use a location-allocation model for healthcare in which telemedicine is integrated into the disaster-response strategy, but implementing the model is hindered by legal restrictions. Innovation in health technology (e.g., AI-driven diagnostics, blockchain-based patient records) could also bring challenges when it comes to legal frameworks. Kovalenko ^[21] argues that the legal framework for remote consultations needs to adapt to keep pace with technological progress. Additionally, the practice of cross-border telemedicine has yet to be addressed.

Augusterfer et al. [30] scrutiny on jurisdiction in delivering telemental health services in post-disaster settings, highlighting the growing need for an agreement on international cooperation regarding the regulation of cross-border digital healthcare services.

The findings support the need for phased and operationally specific regulatory reforms rather than broad normative commitments. At the international level, regulatory harmonization efforts could be advanced through the development of emergency telemedicine protocols under the auspices of global health bodies, establishing minimum standards for licensure recognition, data protection, and liability allocation during cross-border disaster response [3, 36].

At the national level, fast-track or provisional licensing mechanisms for telemedicine providers could be activated during declared emergencies, allowing temporary practice authorization subject to post-crisis review [7, 43]. In parallel, the adoption of model contractual clauses addressing jurisdiction, standard of care, and dispute resolution may reduce litigation exposure and enhance provider participation [6, 42].

Jurisdictions exhibiting high compliance burdens may benefit from regulatory sandboxes or sunset clauses that permit controlled experimentation with telemedicine solutions in disaster contexts, balancing innovation with legal oversight [4, 9]. This analysis offers a thorough evaluation of telemedicine's legal terrain with respect to disaster response by elucidating regulatory barriers, compliance difficulties, and litigation risks. On the other hand, countries like Australia and Japan, which encourage telemedicine innovation, continue to flourish while newer jurisdictions resulting in legal restrictions, such as China and the EU, make digital healthcare innovation slower. The solutions to these challenges come in the form of harmonized international frameworks, simplified compliance processes, and alternative dispute resolution mechanisms. Future studies must continually examine changing legal standards within digital healthcare and how they change the associated patient outcomes, ensuring telemedicine remains a relevant component of worldwide disaster response.

6. Conclusion

Telemedicine is permissive and legal under varied degrees of control in most areas studied, but full utilization during disasters requires extraordinary compliance and increased risk of legal retribution, which disproportionately affects vulnerable populations and disrupts care delivery across state lines. Understanding the challenges to the legal operation of telemedicine in a disaster setting elucidates the relationship between public health needs and the legal system, particularly in environmental contexts, and the difficulties ahead. In this inaugural assessment of telemedicine capability in a disaster setting, was found disparity between the legal and social landscape surrounding telemedicine and our conceptualizations of lawful telehealth, establishing a paradigm for future research by demonstrating the need for empirical investigation of telemedicine in governance, public health, and the social discourse on telemedicine implementability in the setting of disasters and environmental public health concerns. Studying the implication of laws and regulation on telemedicine adoption, the analysis shows that some regions have legal frameworks that facilitate the adoption of telemedicine, while others impose barriers that prevent it. Data availability statement: The data that support the findings of this study are available from the corresponding author upon reasonable request. Through assessments of compliance burdens, litigation trends, and legal adaptability, the study draws conclusions about how regulatory oversight must be balanced with flexibility if telemedicine is to operate well in a state of emergency.

An important element in this study is the identification of determinants of substantial regulatory dissonance prevailing that has direct implications for the effectiveness of telemedicine across jurisdictions.

These jurisdictions have telemedicine regulations that are clear and adaptable, allowing healthcare systems to incorporate telemedicine into their disaster response frameworks more easily and enable providers to act efficiently without the weight of administrative barriers. On the other hand, legal uncertainty or inflexible compliance requirements in some areas creates operational roadblocks that postpone delivering lifesaving medical care at the time of urgent need.

Disaster response establishments face a significant problem, as identified through this research, the absence of a unified international regulatory framework for telemedicine. Lack of standardized guidelines leads to the jurisdictional conflict causing uncertainty about the legal status of healthcare providers operating across borders. Such fragmentation makes compliance more cumbersome and also hinders the potential of telemedicine to be a scalable solution in time of emergencies. We must work together — policymakers, healthcare professionals, and attorneys — to fill these gaps and regulate technology in a way that ensures security and ethical treatment while not stifling innovation.

The results also indicate that strengthening dispute resolution methods may reduce legal risks related to telehealth. Through analysis of litigation trends, it is apparent those jurisdictions where legal complexity is high, legal proceedings are generally not a brokered process, resulting in those litigations becoming extended, which imposes an ever-growing cost burden, both financially and operationally, on the telemedicine provider. The outcome could be balanced in favour of alternative dispute solution mechanisms, like arbitration and mediation, providing more efficient paths toward solving legal conflicts whittling away the delays and expenses of traditional litigation. Also, easing needless compliance burdens in high-regulation jurisdictions would allow healthcare providers to concentrate on providing services rather than responding to legal and technical requirements.

The regulatory roadmap also needs to be structured for legal certainty to be imparted to the telemedicine industry. Long-term policies that provide stability, while accommodating technological advancement, should be prioritized by government and regulatory bodies. The legal framework should ensure that it provides not only the compliance requirements but also the periodic updates as per the rapidly advancing nature of digital healthcare technologies. Adaptability of regulations without undue complexity will be critical to enabling wider use of telemedicine in disaster circumstances.

Further research is needed to evaluate the long-term effect of regulatory reforms on the effectiveness of telemedicine, especially in the context of responding to emergencies. Despite the evolving landscape of transplantation, there are many legal issues we need to address in the coming time as new technologies like artificial intelligence and blockchain-based health records are being put in place. Exploring the interaction of these technologies with current regulations need to be a central focus in the governance effort to create policies aimed at simultaneously improving the security of and access to telemedicine services. Similarly, comparative studies of regional differences in telemedicine regulatory frameworks might shed more light on best practices that could guide towards a more unified legal structure.

Legal frameworks that are either structured or flexible are necessary to ensure that telemedicine remains a viable and effective tool for disaster response. The article highlights the challenge of balancing regulatory oversight with flexibility, building on the observation that an overly inflexible legal framework stifles the nimbleness of the system to adapt to the new realities of telemedicine. Enhanced legal certainty that comes from international alignment in regulations, compliance, and dispute resolution processes will foster the continued expansion of telemedicine and its ability to transform and contribute to global health system resiliency.

Conflict of interest

The authors declare no conflict of interest

References

1. Nittari G, Khuman R, Baldoni S, Pallotta G, Battineni G, Sirignano A, et al. Telemedicine Practice: Review of the Current Ethical and Legal Challenges. *Telemedicine and e-Health*. 2020;26(12):1427-37.
2. Tedeschi C. Ethical, Legal, and Social Challenges in the Development and Implementation of Disaster Telemedicine. *Disaster Medicine and Public Health Preparedness*. 2021;15(5):649-56.
3. Ansah E, Amoado M, Obeng P, Sarfo J. Health systems response to climate change adaptation: a scoping review of global evidence. *BMC Public Health*. 2024;24.
4. Chun K, Octavianti T, Dogulu N, Tyralis H, Papacharalampous G, Rowberry R, et al. Transforming Disaster Risk Reduction With AI and Big Data: Legal and Interdisciplinary Perspectives. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*. 2024;15.
5. Bente B, Van Dongen A, Verdaasdonk R, Gemert-Pijnen J. eHealth implementation in Europe: a scoping review on legal, ethical, financial, and technological aspects. *Frontiers in Digital Health*. 2024;6.
6. Holčapek T, Šolc M, Šustek P. Telemedicine and the standard of care: a call for a new approach? *Frontiers in Public Health*. 2023;11.
7. Boyle T, Boggs K, Gao J, McMahon M, Bedenbaugh R, Schmidt L, et al. Hospital-Level Implementation Barriers, Facilitators, and Willingness to Use a New Regional Disaster Teleconsultation System: Cross-Sectional Survey Study. *JMIR Public Health and Surveillance*. 2023;9.
8. Curioso W, Coronel-Chucos L, Henríquez-Suarez M. Integrating Telehealth for Strengthening Health Systems in the Context of the COVID-19 Pandemic: A Perspective from Peru. *International Journal of Environmental Research and Public Health*. 2023;20.
9. Savoldelli A, Landi D, Rizzi C. Exploring Quantitative Methodologies for Assessing the Environmental, Social, and Economic Impacts of Telemedicine: A Literature Review. *Sustainability*. 2024.
10. Boyle T. The Path of Telemedicine in Disaster Response. *Disaster Medicine and Public Health Preparedness*. 2024;18:e176.
11. Doarn CR, Latifi R, Poropatich RK, Sokolovich N, Kosiak D, Hostiuc F, et al. Development and Validation of Telemedicine for Disaster Response: The North Atlantic Treaty Organization Multinational System. *Telemedicine and e-Health*. 2018;24(9):657-68.
12. Gulzari A, Tarakci H. A healthcare location-allocation model with an application of telemedicine for an earthquake response phase. *International Journal of Disaster Risk Reduction*. 2021;55:102100.
13. Botrugno C. Telemedicine in daily practice: Addressing legal challenges while waiting for an EU regulatory framework. *Health Policy and Technology*. 2018;7(2):131-6.
14. Park DW, Ryoo HS, Hyeon SH. Improving Legal Framework for Telemedicine between Physicians and Patients. *Crisis and Emergency Management: Theory and Praxis*. 2024.
15. Solimini R, Busardò FP, Gibelli F, Sirignano A, Ricci G. Ethical and Legal Challenges of Telemedicine in the Era of the COVID-19 Pandemic. *Medicina [Internet]*. 2021; 57(12).
16. Mohammadzadeh N, Saeedi S, Rezayi S. Telemedicine and natural disasters: various services, requirements, challenges, and general framework. *Frontiers in Emergency Medicine*. 2022.
17. Rene Zakharia P, Hono S, Wieke Dewi S. Legal Reconstruction of the Legality of Digital Telemedicine in the Health Industry. *International Journal of Sociology and Law*. 2024;1(4):132-43.
18. Iswandari H, Erawati, A., Sugiharto, S., & , H. Reconstructing Legal Frameworks for Safeguarding Telemedicine Consumers. *International Journal of Religion*. 2024;5(11):4309-15.
19. Perez-Roman RJ, Trenchfield DR, Perez-Roman NI, Wang MY. The Legal and Socioeconomic Considerations in Spine Telemedicine. *Neurosurgery*. 2022;90(4).
20. Puri. A. Legal Challenges and Considerations in Implementing Telemedicine Services *International Journal of Social Science and Economic Research* 2024;9(9): 3453-9.
21. Kovalenko. MA. Legal regulation of remote consultation in the field of telemedicine. *Digital Diagnostics* 2024;5(1S):34-6.
22. Becker Christian D, Dandy K, Gaujean M, Fusaro M, Scurlock C. Legal Perspectives on Telemedicine Part 1: Legal and Regulatory Issues. *The Permanente Journal*. 2019;23(3):18-293.
23. Townsend BA, Scott RE, Mars M. The development of ethical guidelines for telemedicine in South Africa. *South African Journal of Bioethics and Law*. 2019.
24. Nejad SS, Jannati N, Sarabi RE, Bahaadinbeig K, editors. Use of telemedicine and e-health in disasters: a systematic review2020.

25. Anwar S, Prasad R, Chowdhary BS, Anjum MR. A Telemedicine Platform for Disaster Management and Emergency Care. *Wireless Personal Communications*. 2019;106(1):191-204.
26. Vazov R, Kanazireva R, Grynko TV, Krupskyi OP. Strategies for Healthcare Disaster Management in the Context of Technology Innovation: the Case of Bulgaria. *Medicini perspektivi*. 2024;29(2):215-28.
27. Rolston DM, Meltzer JS. Telemedicine in the Intensive Care Unit: Its Role in Emergencies and Disaster Management. *Critical Care Clinics*. 2015;31(2):239-55.
28. Burke BL, Jr., Hall RW, the SOTC, Dehnel PJ, Alexander JJ, Bell DM, et al. Telemedicine: Pediatric Applications. *Pediatrics*. 2015;136(1):e293-e308.
29. Woodward CA, Voskanyan A, Benham TL, Issa FS, Hart A, Ciottone GR. Mental Health in Disaster Medical Response Teams: An Assessment of Existing Resources and Applications for Telemedicine. *Prehospital and Disaster Medicine*. 2022;37(S2):s78-s.
30. Augusterfer EF, Mollica RF, Lavelle J. A review of telemental health in international and post-disaster settings. *International Review of Psychiatry*. 2015;27(6):540-6.
31. Parimbelli E, Bottalico B, Losiuk E, Tomasi M, Santosuoso A, Lanzola G, et al. Trusting telemedicine: A discussion on risks, safety, legal implications and liability of involved stakeholders. *International Journal of Medical Informatics*. 2018;112:90-8.
32. Müller A, Kraus S, Arimond R, Kunczik J, Rossaint R, Czaplik M, et al. Telemedicine in civil protection: A controlled simulation study for the analysis of patient care. *DIGITAL HEALTH*. 2024;10:20552076241272662.
33. Metanat S, Kazemi F, Afraz S, Heydari M. Telemedicine Applications in Primary Health Care During a Crisis: A Scoping Review. *Depiction of Health*. 2023;14(2):260-74.
34. Khatri J, Fitzgerald G, Poudyal Chhetri MB. Health Risks in Disaster Responders: A Conceptual Framework. *Prehospital and Disaster Medicine*. 2019;34:209 - 16.
35. Jain D. Regulation of Digital Healthcare in India: Ethical and Legal Challenges. *Healthcare*. 2023;11.
36. Khatri R, Endalamaw A, Erku D, Wolka E, Nigatu F, Zewdie A, et al. Preparedness, impacts, and responses of public health emergencies towards health security: qualitative synthesis of evidence. *Archives of Public Health*. 2023;81.
37. Mahdavi S, Fekri M, Mohammadi-Sarab S, Mehmadoost M, Zarei E. The use of telemedicine in family medicine: a scoping review. *BMC Health Services Research*. 2025;25.
38. Ahmed A, Mutahar M, Daghry A, Albar N, Alhadidi IQ, Asiri A, et al. A Systematic Review of Publications on Perceptions and Management of Chronic Medical Conditions Using Telemedicine Remote Consultations by Primary Healthcare Professionals April 2020 to December 2021 During the COVID-19 Pandemic. *Medical Science Monitor : International Medical Journal of Experimental and Clinical Research*. 2024;30.
39. Malakhov K. Insight into the Digital Health System of Ukraine (eHealth): Trends, Definitions, Standards, and Legislative Revisions. *International Journal of Telerehabilitation*. 2023;15.
40. Hosseini S, Boushehri SA, Alimohammadzadeh K. Challenges and solutions for implementing telemedicine in Iran from health policymakers' perspective. *BMC Health Services Research*. 2024;24.
41. Lu J, Ling K, Zhong W-D, He H, Ruan Z, Han W. Construction of a 5G-based, three-dimensional, and efficiently connected emergency medical management system. *Heliyon*. 2023;9.
42. Nobile G. Legal Aspects of the Use of Artificial Intelligence in Telemedicine. *Journal of Digital Technologies and Law*. 2023.
43. Haimi M. Telemedicine in war zones: prospects, barriers, and meeting the needs of special populations. *Frontiers in Medicine*. 2024;11.