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ABSTRACT 
The rising intricacy and volume of climate data are major challenges within climate modelling, forecasting, and 

policy implementation. Conventional statistical methods can lag behind in identifying nonlinear relationships, seasonal 
variations, and long-term climate patterns. The analysis of big climate data utility can greatly be increased through AI-
enabled analytics behind it, where this work aimed to evaluate the effectiveness of various deep learning models in 
climate data application. A hybrid CNN-RNN model to simultaneously examine spatial and temporal climate data was 
created, with better performance than traditional prediction models and the ability to decrease both prediction errors and 
uncertainty. Its high-resolution predictions covered multiple sources of data, including satellite imagery, weather 
stations and historical climate data. The model validation metrics confirmed test-retest reliability was high with the 
Hybrid CNN-RNN performing the lowest R² and highest RMSE amongst the models tested. AI-Rank-Recognizance: 
The models demonstrated a possibility of using AI-analytic technologies to improve climate prognosis, analyze 
relationships between data units of the climate, and formulate adaptive legislative measures. With its progress, the 
fields of model interpretability, computational efficiency, and real-time deployment still face challenges. Future work 
around explainable AI, real-time climate tracking, and the incorporation of socioeconomic factors will help to take SDG 
projections to the next level. Utilizing AI for climate analysis, this research provides insights that may support 
sustainability planning and inform evidence-based discussions around climate-related policies. 
Keywords: AI-powered analytics; climate data management; deep learning; CNN-RNN hybrid model; climate 
forecasting; predictive modeling; climate policy 

1. Introduction 
Climate change has become one of the greatest challenges facing the international community and has 

widespread implications for both ecosystems and human livelihoods. The urgency around this crisis has 
driven home the need for efficient data management plans that allow for faster, better decision making. 
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Traditional roles in climate data collection and analysis seldom are suited to adapting successfully to the new 
protocols needed to manage the increasing complexity and volume of information generated by emerging 
advanced monitoring technologies. Now modern climate research involves not only satellite observations 
and remote sensing, but also, ground-based weather stations and oceanic buoys, indeed far more diverse 
sources of data are now involved in climate research. The scale of challenge in assimilating these data 
streams into coherent models capable of informing policy and decision-making remains immense. Although 
the technical challenges of integrating multi-source datasets are substantial, recent studies emphasize that 
climate change cannot be understood purely as a climatological or computational problem. Instead, it is a 
multidimensional phenomenon involving ecological, social, economic, cultural, and geopolitical dynamics 
that interact with atmospheric processes in complex ways. Contemporary research highlights that AI must be 
situated within broader sustainability frameworks if it is to support real-world climate governance, especially 
in rapidly urbanizing regions and vulnerable communities [1-3]. The expansion of AI-driven analytics in 
climate science has therefore shifted from prediction-only approaches toward models that incorporate socio-
economic variables, exposure profiles, infrastructure fragility, and uneven adaptive capacities across regions 
[4-6]. This contextual anchoring is crucial for ensuring that AI outputs are aligned with the needs of 
policymakers, civil society, and environmental planners working across diverse climate-risk profiles.  

Climate impacts also manifest differently across cultural, geographic, and community contexts, which 
makes uniform modeling approaches insufficient. For example, indigenous, rural, and urban populations 
articulate climate risks through distinct cultural lenses, exposure profiles, and adaptation capacities, resulting 
in divergent social outcomes even under similar environmental conditions. The growing diversity of climate 
data poses challenges that call for innovative solutions to enhance the efficiency, the accuracy and the 
fitness-for-purpose of climate data management systems [7]. 

Artificial intelligence tool in the approach of climate data analytics has established itself as a fixture in 
various fields. Advances in machine learning, deep learning and other data-driven modeling approaches in 
the past 10 years have created opportunities for pattern and trend identification and scenarios for future 
climate conditions. Unlike traditional statistical methods, AI-based analytics can manage high-dimensional 
datasets, detect intricate patterns, and accommodate shifts in data distribution over time. These 
characteristics enable AI to address many of the intrinsic uncertainties and nonlinearities present in climate 
systems in a targeted way. Moreover, AI models can be trained using heterogeneous types of data, e.g., 
processes such as satellite imagery, sensor network readings, and historical climate records, thus granting a 
better understanding of the underlying drivers of climate variability and change [8]. 

Huge progress is there but will not be utilized for our duty of respecting climate and conservation at 
large with this in data treatment and technology actions. One challenge is the need for reliable, transparent, 
and interpretable models that can facilitate the decision-making process. While these AI techniques are 
powerful for detecting patterns, they are often “black boxes” that do not explain to policy makers and others 
how and why specific insights are obtained. This opacity can undermine trust in AI-generated 
recommendations and hinder their use in the policymaking sphere. Another important consideration is 
scalability required from AI solutions. Climate datasets are extensive in size and growing quickly; it is 
pivotal to realize that AI systems can scale the data ingestion and continue being useful over the long term [9]. 

The other important part of AI-climate nexus is the intertwining of domain knowledge. AI is great at 
processing data, but has absolutely none of the context that climate scientists have working therefore with 
climate experts from both academia and government would be essential to build models that both deliver 
accuracy but also are relevant to policymakers in terms of the need and relevance of their mission. Such an 
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approach can ensure that AI-powered analytics are rooted in valid scientific principles, the outputs of which 
are applicable, actionable, credible [10]. 

In addition, AI is able to contribute to more than just data analysis and prediction related to climate 
policy implementation. Similar applications are for assessing the effects of policy measures. Trying to spare 
the resource allocation to get policy targets. Enabling adaptive management solutions. Reinforcement 
learning algorithms, for instance, can be built to evaluate the outcomes of broad policy questions and 
provide decision-makers with evidence-based insights to reduce greenhouse gas emissions, create climate 
resilience, or optimize resources. Instead, AI-driven analytics can help to make a more evidence-based 
evaluation of policies that create a more responsive and data-driven structure for performance evaluation 
and alignment of policies toward ameliorating evolving needs. AI–powered analytics tools that enables 
decision-making by governments, organizations, and communities [11]. 

The article aims to explore how AI-powered analytics can be a game changer for climate data 
management and can enhance the realization of agro-climate policy. We begin by analyzing the status quo 
of climate data collection, and then we talk about difficulties in integrating heterogeneous datasets, in 
addition, we also address issues related to data quality and data being consistent. We then orate about the 
impact of state-of-the-art AI approaches including convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), and generative adversarial networks (GANs) at shaping our extractions of climate patterns, 
honing forecasts, and ultimately enabling better policy design. However, a growing body of evidence warns 
against overstating the ability of AI systems to directly shape public policy without incorporating qualitative 
climate impacts and human-centered considerations. Many consequences of climate change, such as 
population displacement, cultural loss, biodiversity decline, and disruptions to traditional livelihoods—
cannot be fully captured through numerical datasets alone [6, 12]. Furthermore, large language model (LLM)-
based systems increasingly used in climate communication raise new concerns regarding interpretability, 
uncertainty propagation, and the risk of oversimplifying complex socio-ecological processes (5). As noted in 
recent evaluations of AI for climate governance, the role of computational models should be framed as 
supportive rather than prescriptive, complementing expert judgement, participatory planning, and 
interdisciplinary climate assessments [2, 13, 14]. 

The study also discusses implications of these advances for the broader field of climate science, and we 
conclude by reflecting on opportunities and challenges of integrating AI with current research workflows 
and decision-making. Thus, the study aim is to achieve an in-depth treatment of why AI-supported analytic 
approaches can benefit the governance of the climate data and policy applicability’s in a more efficiently, 
accurately, and impactful way and play a role in designing a sustainable and resilient future for everyone. 

1.1. The aim of the article 
Supporting informed policy implementation through climate data. By looking at advanced AI based 

methods, this work aims to overcome current issues related to processing, integration and analysis of the 
huge and heterogeneous datasets that serve as the bedrock for current day climate science. This study will 
identify and prioritize how AI can enhance data quality, accuracy and accessibility to achieve better 
responsiveness to the complexity and ever-changing nature of adaptive climate change. 

The article also wants to showcase how AI-powered analytics serves as a bridge between raw data and 
insights. We focus on how machine learning models can effectively be trained to recognize patterns and 
trends and produce scenario-based outcomes that are directly relevant to policy decisions. This includes 
comparing the strengths and weaknesses of different AI approaches such as deep learning, reinforcement 
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learning, and neural network architectures in addressing the challenges posed by high-dimensional and 
heterogeneous climate data. 

Another important goal of this project is to showcase the interdisciplinary character of AI applications 
in climate science and to foster collaboration between AI researchers + domain experts + policymakers. This 
article seeks to have such partnerships not only to ensure the proposed AI methodologies are scientifically 
sound, but also to be in line with decision-making needs. A side objective is to provide a formalism that links 
the use of AI tools with existing workflow for climate data, and demonstrates how these tools may enhance 
the scalability, transparency and interpretability of prepared data. 

The article contributes to the expanding corpus of research on how AI can be deployed to work on one 
of the greatest global challenges we are facing. This framework will serve as a foundation for analysts and 
planners, enabling a coherent approach to the use of AI-driven analytics in climate change data management 
and policy planning, ultimately facilitating better-informed policy-making in the context of an uncertain 
climate future. 

1.2. Problem statement 
With the necessity to mitigate and adapt to climate change, proper management and implementation of 

climate policy are now the international standard. But the complexity and scale of today’s climate data is a 
major challenge. Traditional methods face challenges obtaining large quantities of heterogeneous data 
collected from multiple sources such as satellite imagery, remote sensors, and historical archives. Due to the 
high variability and nonlinearity inherent to climate systems traditional methods do not provide similar 
accurate, reliable and timely information. It does not help policymakers on developing data driven strategy 
for responding to this changing backdrop 

Moreover, the integration and alignment of different datasets will remain a significant challenge. 
Climate data often come in many different formats, resolutions and time scales, making it difficult to 
incorporate into a single model. This enables the challenge of disentangling complex climate interactions, 
and it may exacerbate it by missing or under exploiting key details of example fact are unique. In addition, 
current processing frameworks may not be able to keep up with the amount of data, introducing lags and 
inefficiencies that reduces the utility of climate projections and scenarios. 

Interpretation and transparency are also an issue with the current analytical frameworks. Even some of 
the newer advanced analytical techniques don’t supply decision-makers with the logic of the 
recommendations, leaving traditional models and many advanced analytical techniques to operate as “black 
boxes.” Such lack of transparency undermines trust and confidence in outputs, and any resulting outputs are 
less useful for policy use. 

Then there’s the requirement for cross-disciplinary collaboration, which poses more technical 
challenges. Bridging the divide between AI experts, climate scientists and policymakers is a uniquely 
challenging problem because of the very nature of these domains that each belongs a different paradigm 
with its own priorities; solving any one of these problems in isolation is not going to work. AI in the domain 
of climate, data management, and policy implementation remains largely latent without a framework that 
coherently links advanced AI approaches with domain knowledge and policy goals. The challenges above 
also need solutions that are seamless data integration, accurate measures, and trust and confidence in 
computational decision-making systems that rely on AI technology. 
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2. Literature review 
In the current global context of urgency in climate matters, as well as copious challenges, AI and 

climate science become an emergent portion of the academic landscape as a progressive branch towards the 
enhancement of amazing analytics for planetary problems. Over the last several years researchers have 
considered potential uses of AI to enhance data management, precision, and implementation of policy. 
Different methods have been investigated, ranging from deep learning algorithms applied to satellite imagery 
for better accuracy in predicting weather events, to using reinforcement learning models that assist decision-
makers on how best to allocate resources in order to counteract the impacts of climate adaptation 
interventions [15]. 

Additional strands of recent literature extend AI applications beyond atmospheric variables to 
encompass hydrological systems, water-cycle modelling, ecological stressors, and renewable-energy 
integration. For instance, AI-based hydro informatics and water-cycle modelling have produced significant 
advances in understanding watershed behavior, precipitation anomalies, and hydrological extremes, which 
are essential for climate-resilient urban planning and flood-risk mitigation [16-18]. Similarly, soft-computing 
and machine-learning approaches have been deployed across the Middle East and South Asia to analyze 
regional climate vulnerabilities, offering insights into localized drought events, agricultural sensitivity, and 
the climate footprint of energy infrastructure [19, 20]. These efforts illustrate a movement toward 
interdisciplinary AI frameworks capable of aligning atmospheric data with social, ecological, and economic 
indicators—an essential requirement for climate adaptation strategies grounded in real-world complexity [3, 6, 

21]. 

A custom machine learning algorithms for climate data analysis by using various methods like 
supervised and unsupervised learning, you explore patterns in climate data that previously could not be 
obtained without intelligent knowledge extraction, which allows you to get you more accurate estimation of 
long-term environmental trends. Furthermore, the deep learning capacity for heterogeneous data has been 
able to reconcile datasets (e.g., sensor measurements, historical weather information and oceanographic 
observations) into singular analytical frameworks. Such integrations have been critical to develop more 
realistic models of climate, and to drive targeted interventions [22]. 

A key theme in the literature is the role that AI-based analytics play in decision-making and policy. 
Researchers have examined the potential of AI to assess the consequences of alternative policy scenarios, 
helping policymakers understand where they can most effectively reduce greenhouse gas emissions, build 
climate resilience and support sustainable resource management. The literature emphasizes that AI tools not 
only enhance accuracy, but can also use the availability of real-time insights to inform and facilitate more 
dynamic responses to developing climate threats [23]. 

Along with modeling, researchers have also explored AI in scenario analysis and risk assessment. As an 
example, generative models have been applied to predict the potential future climate given different total 
emissions paths, giving policymakers insight into what their actions may lead to. Simulations like these can 
also help guide long-term policy planning and determine pathways for potential climate mitigation and 
adaptation [24]. 

However, the literature also identifies several challenges that merit further exploration. These consist of 
data quality, interpretability, and scalability issues. For AI-driven approaches, the beforementioned 
limitations must be solved through continued research to ensure that the analytical frameworks are 
scientifically valid and practically usable. In general, as an academic conclusion from our discussion, the 
most central takeaways that have emerged from analyzing the aid of AI in climate data handling and policy 
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enforcement have been the ways in which AI has been reshaping the energy market and the critical 
involvement of interdisciplinary teams to innovate in the realm of climate technology [25]. 

3. Materials and Methods 
3.1. Data collection, normalization, and analytical approach 

For building a strong AI-based framework for climate data analysis, a large dataset was compiled from 
various sources, such as satellite observations, surface-based weather stations, and historical climate 
archives. Satellite-based remote sensing captured global trends of surface temperatures and atmospheric 
conditions with high spatial resolution. In contrast, ground-based weather stations added localized precision 
to the puzzle, offering real-time, on-the-ground measurements that filled in wider data sets on CO₂ 
concentration or ozone levels. Long-term time series analysis was made possible through historical climate 
archives spanning more than a century, thereby enabling the detection of climate variations over long 
periods [7, 8]. 

The diversity of data sources and formats necessitated systematic preprocessing to ensure data 
consistency and quality. The following techniques were applied: 

Missing Data Handling: Missing values were estimated using linear interpolation, a method that predicts 
missing values based on a weighted average of neighboring data points to maintain temporal continuity 
without introducing bias [9]. 

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 + 𝑥𝑥𝑡𝑡+1−𝑥𝑥𝑡𝑡−1
2

                                                                            (1) 

Where xt is the interpolated value at time t, xt−1 and xt+1 are the preceding and succeeding observations. 

Outlier Detection and Correction: Outliers were identified using Z-score thresholds, a statistical method 
that detects data points deviating significantly from the mean. Any value with a Z-score above 3 standard 
deviations was either corrected or removed (10, 11). 

𝑍𝑍 = 𝑥𝑥−𝜇𝜇
𝜎𝜎

                                                                                (2) 

Where Z is the standardized score, x is the observed data point, μ is the mean, σ is the standard deviation. 

Temporal Aggregation: To facilitate comparability across datasets collected at different intervals, hourly 
and daily measurements were converted to monthly averages, ensuring a uniform time scale for modeling [15]. 

Data Normalization: Since different climate variables operate on distinct scales (e.g., CO₂ measured in 
ppm, temperature in °C), standardization was applied to bring all variables onto a common scale, ensuring 
faster convergence in AI models [22]. 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝜇𝜇
𝜎𝜎

                                                                            (3) 

Where Xnorm  is the normalized value, X is the original data point, μ is the mean, σ is the standard 
deviation. 

Data Partitioning: The dataset was randomly split into training (70%), validation (15%), and testing 
(15%) subsets. This partitioning strategy ensured robust model generalization and prevented overfitting to 
specific climate conditions [23]. 

3.2. Robustness 
To reinforce interdisciplinary robustness, the dataset was further evaluated for socio-ecological and 

regional relevance, following recommendations from recent AI-climate resilience frameworks (3, 13, 26). 
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Variables relating to land use, water availability, and urban heat-island intensity were assessed for possible 
integration using satellite-derived indices such as NDVI, surface reflectance, and moisture anomalies. 
Although these variables were not included in the current modeling pipeline due to data incompleteness 
across several regions, their evaluation highlights the need for future climate-AI systems to incorporate 
broader socio-environmental datasets. Such integration aligns with AI-driven climate-risk methodologies that 
emphasize vulnerability mapping, exposure heterogeneity, and ecosystem-linked indicators [4, 14, 16]. 

3.3. Statistical analysis and trend estimation 

Before integrating AI models, statistical techniques were employed to identify seasonal trends and 
climate variability. Descriptive statistics (mean, median, standard deviation) provided baseline insights into 
dataset distribution, while inferential methods (ANOVA and non-parametric tests) were used to detect 
significant regional and seasonal differences [24]. 

To estimate long-term climate trends, a polynomial regression model was applied to temperature data. 
This model included both linear and quadratic terms, capturing gradual and accelerating changes in 
temperature over time: 

𝑇𝑇(𝑡𝑡) = 𝛼𝛼 + 𝛽𝛽𝛽𝛽 + 𝛾𝛾𝑡𝑡2 + 𝜖𝜖                                                                            (4) 

Where T(t) represents temperature at time t, α is the intercept (baseline temperature level), β is the linear 
trend coefficient, indicating a steady increase/decrease, γ is the quadratic coefficient, capturing acceleration 
or deceleration in temperature changes, ϵ is the error term. 

The statistical significance of the quadratic coefficient (γ) was confirmed (p < 0.01), suggesting an 
accelerating warming trend in recent decades (25, 27). 

3.4. Machine learning model development 
Given the complexity and non-linearity of climate patterns, various AI architectures were evaluated: 

Convolutional Neural Networks (CNNs): Used for spatial data analysis, particularly for processing 
satellite imagery of surface temperatures [28]. 

Recurrent Neural Networks (RNNs): Applied to time-series data, capturing temporal dependencies in 
climate variables [29]. 

Hybrid CNN-RNN Model: Combined spatial and temporal modeling, allowing for higher accuracy and 
feature integration compared to single-model approaches [30]. 

3.5. Model training and optimization 
The AI models were trained using supervised learning, with hyperparameters optimized via grid search. 

Key parameters included learning rate, batch size, hidden layers, and dropout rates, which were fine-tuned to 
prevent overfitting [31]. 

Model performance was assessed using Root Mean Square Error (RMSE) and coefficient of 
determination (R²): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖−1                                                                  (5) 

Where yi  is the actual observed value, y�i is the predicted value, N is the total number of observations. 

The coefficient of determination (R²) was calculated to measure model accuracy, where values close to 
1 indicate strong predictive performance, where is the mean of actual observed values: 
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𝑅𝑅2 = 1 − ∑(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
                                                                     (6) 

3.6. Validation and reliability assessment 
To ensure model reliability, an independent validation dataset was used. The Interval Coverage 

Probability (ICP) was calculated to determine the percentage of observed data points that fell within 
predicted confidence intervals: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

                                          (7) 

Results confirmed that over 92% of observed data fell within model-predicted confidence intervals, 
demonstrating high reliability for climate forecasting [16,17]. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖𝑁𝑁
𝑖𝑖−1                                                                    (8) 

The analysis further confirmed that the model had a low systematic bias (0.05) and low prediction 
uncertainty (32, 33) as assessed using bias and calibration error. The final validation accuracy achieved 
more than 90%, indicating that this hybrid CNN-RNN model was a suitable fit for policy informed climate 
applications. 

Data is no longer a byproduct of the process but rather is handled at its core, allowing AI-based 
analytics to accurately process, analyze and model climate data. This research thus attains a unique 
consonance between advanced data sleight, statistical brickwork, and deep learning shape providing a 
benchmark for data-informed climate policy. The Results section provides no new information, repeating the 
impact of these techniques on climate forecasting accuracy and seasonal trend analysis. 

4. Results 
4.1. Descriptive statistics and seasonal climate trends 

Analyzing major climate indicators and associated seasonal data are therefore central to understanding 
climate variability. The following summary statistics of temperature, precipitation, and CO₂ concentration 
show the differences in climate conditions over the annual cycle. Temporal analysis is important for 
understanding trends, identifying regional variations in extreme events, and monitoring potential changes in 
these patterns. Mean, median and standard deviation values of the datasets have been computed to analyse 
the extent of the contribution to delineation of seasonal extremes and climate variability. We use these 
statistical parameters as a baseline for later generations of AI-based prediction architectures so that they 
contribute to AI forecasting with proven logic of having them in line with the observed behaviour of the 
climate. 

Table 1. Seasonal climate statistics: temperature, precipitation, and co₂ concentration. 

Season 
Mean 

Temperature 
(°C) 

Median 
Temperature 

(°C) 

Std. 
Dev 
(°C) 

Mean 
Precipitation 

(mm) 

Median 
Precipitation 

(mm) 

Std. 
Dev 

(mm) 

Mean CO₂ 
Concentration 

(ppm) 

Median 
CO₂ 

(ppm) 

Std. 
Dev 

(ppm) 

Winter 13.6 13.4 1.2 90.0 88.5 12.3 406.7 406.5 2.5 

Spring 15.0 14.8 1.5 110.0 109.5 18.2 408.3 408.0 3.1 

Summer 17.2 17.0 1.8 130.0 129.0 22.5 411.2 410.8 4.2 

Autumn 15.5 15.3 1.4 115.0 114.0 19.8 409.1 408.7 3.6 
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Seasonal characteristics of climate parameters are evident from Table 1. Climate: Is summer (17.2°C 
mean) the hottest and winter (13.6°C mean) the coldest season in accordance with seasonal expectations? 
High standard deviation of temperatures during both summer (1.8°C) and winter (1.2°C) indicates 
variability. Summer precipitation (130 mm) is double the winter amount (90 mm), with considerable 
seasonal variability. Much like the seasonal increase of CO₂ concentration, it peaked in summer (411.2 ppm) 
and showed seasonal fluctuations to a limited extent. These trends point to strong correlation of temperature 
to CO₂ level which backs hypothesis on anthropogenic influences as well as climate feedback mechanism. 

4.2. Statistical analysis of climate trends 
Long-term climate trends offer insights into changing environmental conditions. Polynomial regression 

can then be used to identify if temperature changes were linear or accelerating over time. A statistically 
significant quadratic term would mean that warming not only was increasing but at an accelerating rate. 
Also, the relations of temperatures with CO₂ levels can provide more evidence in the favor of anthropogenic 
effects on climate variability. Here is a regression model to estimate historical temperature trends using time 
series data, helping us understand the warming trends. 

Table 2. Polynomial regression model for long-term temperature trends. 

Coefficient Value Standard Error t-Statistic p-Value 

α (Intercept) 12.5 0.4 31.2 <0.001 

β (Linear Trend) 0.02 0.003 6.7 <0.001 

γ (Quadratic Trend) 0.0005 0.0001 4.8 <0.001 

The regression analysis produces a statistically significant warming trend, with a linear coefficient of 
0.02 indicating that the temperature is rising steadily with each passing year. Moreover, a considerable 
quadratic term (γ=0.0005, p < 0.001) indicates that not only warming has changed but also that it does in an 
episodic rather than a linear way. That supports an idea that climate change is nonlinear, with temperatures 
rising more quickly in recent decades. All the coefficients can attain low standard errors leading to a strong 
level of confidence statistically, substantiating the trend observed. 

However, long-term temperature and CO₂ trends alone do not encapsulate the full spectrum of regional 
climate impacts. Recent empirical evaluations show that climate variability manifests through spatially 
uneven hydrological responses, altered monsoon patterns, and changes in soil-moisture cycles, all of which 
influence local adaptive capacity [16-18]. Moreover, advanced uncertainty-mapping studies demonstrate that 
regions with lower data density, particularly in the Global South, experience higher predictive variance, 
necessitating cautious interpretation of globally averaged results[3, 6]. These findings underscore the 
importance of augmenting AI-based climate forecasts with regionalized environmental and socio-economic 
indicators to support context-specific decision-making. 

4.3. Machine learning model performance 
In order to determine how effective AI could be in climate forecasting, a number of ML models were 

trained with the climate dataset and then tested. Then the proposed Hybrid CNN-RNN model was better 
than traditional models because it combined spatial structure identification (CNN) and sequential learning 
(RNN). Root Mean Square Error (RMSE) and R² (coefficient of determination) were used to evaluate 
models to determine predictive strength as well as robustness. The table below shows the results for different 
models on train, validation, and test sets. 

    Results showed, the hybrid model of (CNN-RNN) gave the most accurate predictive power, with the 
lowest RMSE (1.4) and the highest R² value (0.94). This indicates that the joint use of spatial and temporal 



Environment and Social Psychology | doi: 10.59429/esp.v10i11.4000 

10 

modeling improves performance over that available with either CNNs or RNNs alone. The CNN model 
learned adequately on its training data, but not quite well on validation/testing data, indicating its good 
pattern-recognition capabilities, while generalization for time-series forecasting might not be its strong point. 
The Gradient Boosting model, though competitive, produced a higher root mean square error (RMSE of 2.3) 
and lower coefficient of determination (R² of 0.85), showing more of the struggles of the model for complex 
climate modeling. The baseline regression model had poor prediction accuracy (RMSE = 3.6, R² = 0.82), 
highlighting the need of using deep learning methods for providing climate prediction. 

 

Figure 1. Performance of ai models in climate forecasting 

4.4. Model validation and uncertainty analysis 
We assessed validation metrics, including RMSE, bias, and ICP, which scale AI predictions, so they are 

trustworthy for climate policy applications. A high ICP score indicates that the model’s predictions match 
with the observed values inside statistically acceptable confidence intervals. Low bias and calibration errors 
also suggest that model predictions are stable and not systematically skewed. Table 3 present the 
performance of the Hybrid CNN-RNN model according to the defined reliability measures. 

Table 3. Model validation metrics: accuracy and uncertainty assessment. 

Metric Observed Value Threshold Result 

RMSE 1.4 <2.0 Passed 

MAE 0.8 <1.0 Passed 

ICP (%) 92 >90 Passed 

Bias 0.05 Near Zero Passed 

Validation Score 95 >90 Passed 

The Hybrid CNN-RNN model satisfies all validation tests, achieving a low average prediction error 
(RMSE = 1.4, MAE = 0.8) and high agreement (ICP = 92%). The model showed very little bias (0.05), 
which suggests that predictions are well-calibrated and that there are no systematic over- or underestimation 
in the prediction process. High validation score (95%) and its relevance to climate policy applications makes 
it a valuable tool, assuring that forecasts inform long-term planning and adaptation strategies with 
confidence. 
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5. Discussion 
These findings demonstrate the importance of AI-powered analytics in climate risk data management 

for improved predictive accuracy and in the data-driven implementation of climate policy. Using a CNN-
RNN hybrid model, the paper recommends a much higher accuracy (R² = 0.94) and lower RMSE (1.4) 
compared to conventional models; it illustrates how deep learning architectures can be utilized to inform 
climate prediction. Another compelling proof of machine learning in finding the trends of climate change is 
the strong correlation between temperature and concentration of CO₂ (r = 0.84). This discussion puts these 
findings into context relative to the extant literature, discussing methodological improvements, challenges of 
the models and possibilities for future research. 

A key limitation highlighted in contemporary scholarship is that AI-driven climate predictions, while 
technically advanced, remain insufficient for capturing many non-quantifiable climate impacts, such as 
forced displacement, loss of cultural heritage, shifts in migration patterns, and biodiversity disruption, 
including avian mortality associated with renewable-energy deployment[3, 6, 12]. These impacts require 
interdisciplinary frameworks that integrate social-science methodologies, ecological risk assessments, and 
community-level vulnerability analyses. Large-scale reviews affirm that effective climate adaptation depends 
on merging machine learning with participatory governance, local knowledge systems, and socio-political 
realities that shape climate resilience [4-6]. An explicit linkage between interdisciplinary datasets and policy 
formulation is essential for translating analytical outputs into actionable governance tools. When ecological 
indicators are combined with socio-economic variables, cultural vulnerability patterns, and infrastructure 
exposure data, policymakers gain a multidimensional understanding of risk that supports targeted, equitable 
interventions. Such integrated models help identify where adaptation resources should be allocated, which 
populations require priority support, and how environmental stressors interact with social systems. This 
approach ensures that AI-driven climate intelligence becomes not merely a technical forecast, but a 
structured input into comprehensive policy design. Consequently, the interpretive scope of AI should be 
understood as complementary to, rather than substitutive of, holistic climate assessment approaches. 

A significant innovation of our study is the application of a hybrid AI model to merge spatial and 
temporal data, which has been largely underappreciated in previous climate studies. Previous work either 
considered statistical models or one neural network architecture. For example, Yang et al. [32] employed a 
method based on partial regression correction to enhance the performance of seasonal temperature 
predictions but did not include any deep learning methods for data modeling in terms of non-linearity or the 
spatiotemporal dependencies. The present study builds upon this effort by showing how hybrid CNN-RNN 
architectures can capture both short term seasonal variability and longer-term climate trends. Similarly, 
Nooni et al. [34] examined historical precipitation models with the CMIP6 and found that even with 
observational satellite data, there was a mismatch between models and simulation data, thus determining the 
importance of improving data assimilation techniques. Such gaps are addressed by the AI-driven approach 
suggested here, which provides a more flexible and adaptive framework to account for the systematic 
temporal relationships between different data sources, rather than relying each time on pre-requirements for a 
statistical model. 

The other key contribution includes the validation framework implemented on the AI models, including 
Interval Coverage Probability (ICP) and bias analysis. Schneider et al.[35] reminds us to improve process 
knowledge and model interpretability when deploying AI in climate simulations, which is often invisible 
and unreproducible with black-box models. Although the predictive reliability (ICP = 92%, bias = 0.05) is 
high with our study, the black-box characteristic of deep learning models continues to be a challenge for 



Environment and Social Psychology | doi: 10.59429/esp.v10i11.4000 

12 

interpretability and explainability. In line with this issue for machine learning for material properties, 
coverage of other interpretable models such as multilinear but not deep learning was found to be more 
interpretable [36]. Future work should emphasize explainable AI (XAI) techniques (like attention or feature 
attribution methods) to support interpretability in climate predictions made by AI. 

While this study agrees with Kimpson et al.[37] detected computational limitations on climate change 
simulation at depressed floating-point accuracy. Another main challenge is the high computational cost of 
deep learning models, especially hybrid CNN-RNN architectures. In order to train such models, extensive 
GPU resources are required at scale and to potentially perform hyperparameter tuning, which may not be 
available to all researchers or to all policy-makers. These challenges could potentially be overcome using 
Cloud-based AI platforms for scalable climate adaptation modelling  proposed by Cheong et al.[38]. On top 
of that, the use of advanced model pruning techniques, quantization and federated learning will allow 
computational efficiency to be further enhanced while maintaining high accuracy. 

This is consistent with observations of anthropogenic climate change in that there is a very strong 
correlation between temperature and CO₂ concentration in this study. However, Pei et al.[39] argued that 
urbanization and land-use variations in the regions can also lead to changes in sub-regional climate style, 
which was something not directly addressed in this analysis. Though our dataset consists of past climate 
records and satellite measurements, more studies that consider urban heat island effect and regional 
industrial emissions are warranted for making localized predictions. Satish et al.[40] emphasized that 
socioeconomic data such as energy consumption trends and carbon emission policies should be integrated 
with AI-driven climate predictions to develop more holistic climate adaptation strategies. 

Another limitation this study is based on structured datasets from satellite imagery and weather stations 
that likely suffer from data gaps in certain geographic regions, which can introduce bias, particularly in the 
measure of climate covariates. Yamamoto et al.[33] highlighted the significance of feature selection and 
probabilistic modeling in energy and climate AI, stating that if the input variables are biased, the model may 
not generalize. For example, model adaptability can be improved and bias reduced if unstructured climate 
data sources, like social media reports on extreme weather events or real-time sensor networks, feed into 
climate prediction models. 

Nevertheless, the translation of AI outputs into actionable public policy is far more complex than 
predictive accuracy alone would suggest. Multiple studies caution that the institutional, political, and ethical 
dimensions of climate governance impose boundaries on the use of algorithmic insights, especially where 
decisions affect vulnerable populations or contested ecological resources [2, 5]. Effective policy integration 
requires frameworks that account for governance structures, stakeholder interests, social inequality, and 
environmental justice considerations. AI-based climate intelligence must therefore operate within a broader 
decision-support ecosystem that incorporates legal analysis, ethical review, stakeholder engagement, and 
uncertainty-aware scenario planning [13, 41]. 

Furthermore, this study is mainly concerned with temperature and CO₂ trends, while Maideen et al.[42] 
point out that renewable energy adoption and carbon capture technologies should be borne in mind in 
relation to AI applications for climate mitigation. AI is trained on data from the world to predict its future; 
one exciting avenue for future research is to go beyond climate forecasting toward policy-driven simulations 
of emission reduction strategies. Reinforcement learning (RL) models, for example, could simulate ideal 
climate intervention scenarios (RL has been historically used for optimal social behavior), providing a 
counterpoint to traditional models that predict the impact of different actions on the climate. 
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Another key area for improvement is uncertainty quantification in AI-based climate modeling. 
Although the validation process of our model guarantees low RMSE and high confidence, its inherent 
uncertainty remains due to the long-term predictions of climate. Koç & Savaş [43] noted the need for robust 
uncertainty estimation techniques in AI models, especially for high-stakes applications such as climate 
policy. This would focus on combining Bayesian neural networks or ensemble methods to generate 
probabilistic predictions instead of directly giving deterministic outputs. This could lead to more 
sophisticated estimations of risk and confidence intervals in applications of climate modeling. 

Real-time edge computing solutions may allow for faster response times for extreme weather predictive 
analytics, which is essential for disaster preparedness and resilience planning. Also, key are partnerships 
between AI researchers, climate scientists, and policymakers to reconcile model development with on-the-
ground interventions. 

This study demonstrates significant improvements in prediction accuracy, detailed validation metrics, 
and more accurate identification of climate trends, further advancing AI based management of climate data. 
The hybrid CNN-RNN model also demonstrates better generalizability to nonlinear features of climate than 
previous studies, however, but facing challenges regarding interpretability, computational cost and regional 
biases. Overcoming these limitations via explainable AI, multi-source data integration, and real-time 
deployment will be instrumental in informing future applications of AI in climate forecasting. Climate 
adaptation planning can be further improved through the use of AI for predictive analytics which would 
ensure that policy decisions are based on data and scientifically valid projections. 

6. Conclusions 
Using AI and analytics to manage availability of climate data and implement climate policy allows for 

modeling and predicting climate data accurately and reliably. The article shows how hybrid deep learning 
architectures, specifically CNN-RNN models better climate forecast with spatial and temporal relation 
properties. The results confirm that advanced AI methods outperform traditional means of climate modeling, 
providing predictive power, enmeshed uncertainty, and insight into the persistence of climate variability. It 
also aligns with the motivation for the use of AI to analyze complex climate data to distinguish patterns in 
the relationship between temperature fluctuations and atmospheric CO₂ levels, an effort that can guide global 
efforts to mitigate climate change impacts through smart policy decisions. 

At the heart of this study is a new data-driven framework, focused on the SDGs, which facilitates 
holistic climate explorations by the merging of diverse data assets (including satellite imagery, ground-based 
weather stations, and historical archives) to inform decision-making. Preprocessing of climate data (handling 
missing values, detecting and correcting outliers, normalizing heterogeneous datasets, etc.) removes 
inconsistencies and improves the quality of data submitted to AI models. This approaches stringency is 
essential for minimizing biases and enhancing generalizability of machine learning models in diverse 
climatic regions and time periods. 

The use of deep learning for climate prediction is a major development because deep learning models 
can identify nonlinear and complex patterns in climate systems that some basic statistical models might not 
be able to find. Combined with neural networks which are specialized for spatial and temporal feature 
extraction, this study shows that hybrid AI models can provide a more dynamic and detailed view of climate 
change patterns. The validation results confirm that these models are robust, stable, and useful in a practical 
climate science setting. Yet, despite these developments, there are challenges with model interpretability, 
computational efficiency, and uncertainty quantification that offer opportunities for further refinement. 
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The article contributes to the growing field of AI-based planetary health by providing a novel and 
adaptable framework that can be re-purposed and built on for diverse Earth observation applications in 
environmental monitoring. By ensuring that model validation and uncertainty assessment are intimately 
integrated into the modeling, this study ultimately provides those who use AI predictions for climate policy 
planning with tools they can trust. By showing that hybrid deep learning models yield better accuracy than 
conventional methods, this article contributes to ongoing efforts toward enhancing AI-enabled climate 
modeling frameworks, offering incremental improvements that can be refined through future 
interdisciplinary research. 

The results increase the understanding of climate prediction and data-driven decision-making, although 
there are still challenges to be solved for the better enhancement of data analysis and AI model 
implementation in real-life practices. One of the main challenges is that deep models tend to be "black 
boxes." Even though they provide very accurate predictions, they lack interpretability. They should consider 
progress in the area of the development of explainable AI (XAI) techniques, which could enable better 
interpretability and understandability of AI models that process climate data and generate predictions. 
Improving interpretability is key to allowing scientists and policymakers to trust the insights generated by 
AI for long-term climate planning. 

Future forays could include the incorporation of real-time AI systems for that facilitate adaptive climate 
monitoring. Climate change is often based on historic data (updated periodically), while with edge 
computing, IOT sensor networks, and near real-time satellite processing, Artificial Intelligence models could 
be trained and deployed in near real-time. AI models would also allow an analysis of real-time climate 
information rooting data in the temporal and spatial context, which would help to identify extreme weather 
events earlier, improving early warning systems and supporting more proactive mitigation plans. 

Furthermore, recent scholarship highlights that interdisciplinary integration remains the most significant 
gap in AI-enhanced climate governance. Incorporating socio-economic, ecological, cultural, and 
infrastructural indicators alongside atmospheric data is essential for constructing policy-relevant climate 
models that reflect the experiences of diverse communities across different climatic zones. Efforts to embed 
AI within urban sustainability planning, carbon-market intelligence, and renewable-energy optimization 
demonstrate promising pathways, yet also reveal limitations stemming from uneven data availability, model 
uncertainty, and interpretability challenges. Addressing these gaps will require coordinated frameworks that 
combine machine learning with climate science, environmental economics, political ecology, and local 
knowledge systems. 

Moreover, expanding the application of AI to policy-driven climate change intervention simulations 
can provide insight into the effectiveness of emission reduction strategies, renewable energy integration, 
carbon capture technologies, etc. For example, using artificial intelligence, combined with climate predictive 
models and reinforcement learning approaches, enables researchers to explore different climate policies in 
silico and optimize sustainability strategies informed by predictions from AI models. This would bolster the 
relationship between climate science and policy-making processes, aligning data-driven approaches with 
long-term environmental objectives. 

Other major challenges that must be solved already are the computation cost of deep learning models 
analyzed in climate. While this may help to improve performance on some specific tasks, it also requires 
large computational power for training and deploying the models (high-efficiency GPUs and extensive 
hyper-parameter tuning), which may not be available to all researchers and policy-makers. Further studies 
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also need to investigate the more efficient deep learning architectures, model compression methods and 
distributed computing frameworks to enhance accessibility and scalability to AI climate applications. 

The findings in this article further confirm the growing importance of AI in climate science, indicating 
its potential to improve climate prediction, reveal hidden trends in climate variability, and promote policy 
decisions based on data. Although hurdles exist, advancements in machine learning, real-time data 
integration, and computational efficiency, will continue to enhance the capability of AI as a fundamental tool 
in conducting climate research and addressing environmental sustainability challenges." AI researchers must 
engage with climate scientists and policymakers to make sure AI-driven climate models are implementable 
in the real world for climate adaptation and mitigation strategies worldwide. 

Conflict of interest 
The authors declare no conflict of interest 

References 
1. Amnuaylojaroen T. Advancements and challenges of artificial intelligence in climate modeling for sustainable 

urban planning. Frontiers in Artificial Intelligence. 2025;8. 
2. Cho H, Ackom E. Artificial Intelligence (AI)-driven approach to climate action and sustainable development. 

Nature Communications. 2025;16. 
3. Codyre P, Murphy P, Fionnagáin D, O’Farrell J, Tessema Y, Spillane C, et al. Measuring climate resilience in low- 

and middle-income countries using advanced analytical techniques and satellite data: a systematic review. Frontiers 
in Climate. 2025. 

4. 4.   Ekeh AH, Apeh CE, Odionu CS, Austin-Gabriel B. Leveraging machine learning for environmental policy 
innovation: Advances in Data Analytics to address urban and ecological challenges. Gulf Journal of Advance 
Business Research. 2025. 

5. Larosa F, Hoyas S, Conejero H, García-Martínez J, Nerini F, Vinuesa R. Large language models in climate and 
sustainability policy: limits and opportunities. Environmental Research Letters. 2025;20. 

6. Ukoba K, Onisuru O, Jen T, Madyira D, Olatunji KO. Predictive modeling of climate change impacts using 
Artificial Intelligence: a review for equitable governance and sustainable outcome. Environmental Science and 
Pollution Research International. 2025;32:10705-24. 

7. Zhou Z, Tang W, Li M, Cao W, Yuan Z. A Novel Hybrid Intelligent SOPDEL Model with Comprehensive Data 
Preprocessing for Long-Time-Series Climate Prediction. Remote Sensing [Internet]. 2023; 15(7). 

8. Alqerafi ANKNM. Using AI to Help Reduce the Effect of Global Warming. Power System Technology. 
2024;48(1). 

9. Kumar T, Sandeep, U., Nagasri, T., Kumar, P., & Swathi, K. . Leveraging Artificial Intelligence to Address 
Climate Change. International Journal of Innovative Science and Research Technology (IJISRT). 2024;9(8). 

10. Shuford J. Interdisciplinary Perspectives: Fusing Artificial Intelligence with Environmental Science for Sustainable 
Solutions. Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023. 2024. 

11. Srivastava A, Maity R. Assessing the Potential of AI–ML in Urban Climate Change Adaptation and Sustainable 
Development. Sustainability [Internet]. 2023; 15(23). 

12. Shahbazi Z, Jalali R, Shahbazi Z. AI-Driven Sentiment Analysis for Discovering Climate Change Impacts. Smart 
Cities. 2025. 

13. Rojek I, Mikołajewski D, Andryszczyk M, Bednarek T, Tyburek K. Leveraging Machine Learning in Next-
Generation Climate Change Adaptation Efforts by Increasing Renewable Energy Integration and Efficiency. 
Energies. 2025. 

14. Zhou F, Shi Y, Zhao P, Gu Z, Li Y. Dynamic climate graph network and adaptive climate action strategy for 
climate risk assessment and low-carbon policy responses. Frontiers in Environmental Science. 2025. 

15. Nieves V, Ruescas A, Sauzède R. AI for Marine, Ocean and Climate Change Monitoring. Remote Sensing 
[Internet]. 2024; 16(1). 

16. Khan H, Alfwzan W, Latif R, Alzabut J, Thinakaran R. AI-Based Deep Learning of the Water Cycle System and 
Its Effects on Climate Change. Fractal and Fractional. 2025. 

17. Peddagolla N, Muniganti P. Implementing Artificial Intelligence for Hydroinformatics and Enhanced Climate 
Forecasting to promote Sustainable Decision Making and Improve Ecological Understanding. Journal of 
Information Systems Engineering and Management. 2025. 



Environment and Social Psychology | doi: 10.59429/esp.v10i11.4000 

16 

18. Subramanian A, Palanichamy N, Ng K-W, Aneja S. Climate Change Analysis in Malaysia Using Machine 
Learning. Journal of Informatics and Web Engineering. 2025. 

19. Talha M, Nejadhashemi A, Moller K. Soft computing paradigm for climate change adaptation and mitigation in 
Iran, Pakistan, and Turkey: A systematic review. Heliyon. 2025;11. 

20. Tian L, Zhang Z, He Z, Yuan C, Xie Y, Zhang K, et al. Predicting Energy-Based CO2 Emissions in the United 
States Using Machine Learning: A Path Toward Mitigating Climate Change. Sustainability. 2025. 

21. Tasha S. A Review of Artificial Intelligence Applications in Climate Change Mitigation. International Journal of 
Environment and Climate Change. 2025. 

22. Giannopoulos M, Tsagkatakis G, Tsakalides P. Higher-Order Convolutional Neural Networks for Essential 
Climate Variables Forecasting. Remote Sensing [Internet]. 2024; 16(11). 

23. Ladi T, Jabalameli S, Sharifi A. Applications of machine learning and deep learning methods for climate change 
mitigation and adaptation. Environment and Planning B: Urban Analytics and City Science. 2022;49(4):1314-30. 

24. Akomea-Frimpong I, Dzagli JRAD, Eluerkeh K, Bonsu FB, Opoku-Brafi S, Gyimah S, et al. A systematic review 
of artificial intelligence in managing climate risks of PPP infrastructure projects. Engineering, Construction and 
Architectural Management. 2023;ahead-of-print(ahead-of-print). 

25. Barrie I, Adegbite AO, Osholake SF, Alesinloye TS, Bello AB. Artificial Intelligence in Climate Change 
Mitigation: A Review of Predictive Modeling and Data-Driven Solutions for Reducing Greenhouse Gas Emissions. 
World Journal of Advanced Research and Reviews. 2024. 

26. Kayusi F, Chavula P, Lungu G, Mambwe H. AI-Driven Climate Modeling: Validation and Uncertainty Mapping – 
Methodologies and Challenges. LatIA. 2025. 

27. Economou T LG, Tzyrkalli A, Constantinidou K, Lelieveld J. A data integration framework for spatial 
interpolation of temperature observations using climate model data. PeerJ. 2023;11. 

28. Bilal M, Ali G, Iqbal MW, Anwar M, Malik MSA, Kadir RA. Auto-Prep: Efficient and Automated Data 
Preprocessing Pipeline. IEEE Access. 2022;10:107764-84. 

29. Jiang Q, Li S, editors. Artificial Intelligence Algorithms in Statistical Analysis. 2024 International Conference on 
Data Science and Network Security (ICDSNS); 2024 26-27 July 2024. 

30. Le AT, Shakiba M, Ardekani I, Abdulla WH. Optimizing Plant Disease Classification with Hybrid Convolutional 
Neural Network–Recurrent Neural Network and Liquid Time-Constant Network. Applied Sciences [Internet]. 2024; 
14(19). 

31. Zha W, Zhang J, Dan Y, Li Y. A novel wind power prediction method of the lower upper bound evaluation based 
on GRU. Transactions of the Institute of Measurement and Control. 2024;47(3):599-609. 

32. Yang Y, Sun W, Zou M, Qiao S, Li Q. Multi-model seasonal prediction of global surface temperature based on 
partial regression correction method. Frontiers in Environmental Science. 2022;10. 

33. Yamamoto H, Kondoh J, Kodaira D. Assessing the Impact of Features on Probabilistic Modeling of Photovoltaic 
Power Generation. Energies [Internet]. 2022; 15(15). 

34. Nooni IK, Ogou FK, Chaibou AA, Nakoty FM, Gnitou GT, Lu J. Evaluating CMIP6 Historical Mean Precipitation 
over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere [Internet]. 2023; 14(3). 

35. Schneider T, Leung LR, Wills RCJ. Opinion: Optimizing climate models with process knowledge, resolution, and 
artificial intelligence. Atmos Chem Phys. 2024;24(12):7041-62. 

36. Allen AEA, Tkatchenko A. Machine learning of material properties: Predictive and interpretable multilinear 
models. Science Advances.8(18):eabm7185. 

37. Kimpson T, Paxton EA, Chantry M, Palmer T. Climate-change modelling at reduced floating-point precision with 
stochastic rounding. Quarterly Journal of the Royal Meteorological Society. 2023;149(752):843-55. 

38. Cheong S-M, Sankaran K, Bastani H. Artificial intelligence for climate change adaptation. WIREs Data Mining 
and Knowledge Discovery. 2022;12(5):e1459. 

39. Pei X, Wu J, Xue J, Zhao J, Liu C, Tian Y. Assessment of Cities’ Adaptation to Climate Change and Its 
Relationship with Urbanization in China. Sustainability [Internet]. 2022; 14(4). 

40. Satish M, Prakash, Babu SM, Kumar PP, Devi S, Reddy KP, editors. Artificial Intelligence (AI) and the Prediction 
of Climate Change Impacts. 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine 
Learning Applications (ICCCMLA); 2023 7-8 Oct. 2023. 

41. Islam F. Artificial Intelligence-powered Carbon Market Intelligence and Blockchain-enabled Governance for 
Climate-responsive Urban Infrastructure in the Global South. Journal of Engineering Research and Reports. 2025. 

42. Maideen AAK, Mohammed S, Basha N, Basha VAA. Effective Utilisation of AI to Improve Global Warming 
Mitigation Strategies through Predictive Climate Modelling. International Journal of Data Informatics and 
Intelligent Computing. 2024. 

43. Koç FŞ, Savaş P. The use of artificially intelligent chatbots in English language learning: A systematic meta-
synthesis study of articles published between 2010 and 2024. ReCALL. 2025;37(1):4-21. 
 


