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ABSTRACT

As environmental pollution becomes more complex over the years, finding effective monitoring methods becomes
crucial. In real-time monitoring, artificial intelligence (AI) and machine learning (ML) models can be integrated to
obtain information about air, water, and soil quality assessment. To improve the accuracy of pollution detection and
forecasting, this study proposes a comprehensive framework that integrates IoT-enabled sensor networks, predictive Al
models, and statistical validation techniques. The article assesses the relative performance of Gradient Boosting
Machines (GBM), Long Short-Term Memory (LSTM) networks, and Transformer-based split networks to predict
environmental changes.

The study was conducted across multi-domain urban, suburban, and rural monitoring zones using multimodal
datasets derived from IoT sensors, remote sensing streams, and laboratory-validated environmental indicators. Similar
integrated AI-ToT ecological monitoring strategies have been highlighted in recent literature as essential for sustainable
environmental protection and high-fidelity pollution forecasting. The dataset comprised 216 air samples, 144 water
samples, and 96 soil assays collected from three monitoring regions.

Results show that PM2.5 concentrations decreased by 12% (p < 0.01), water turbidity declined by 15% (p < 0.01),
and lead levels in soil were reduced by up to 16.1% in agricultural sites. The GBM model achieved the highest
predictive performance with Root Mean Square Error (RMSE) = 2.1 pg/m?, Coefficient of Determination (R?) = 0.94,
and F1-Score = 92.0%, outperforming LSTM and Transformer models.

Beyond technical performance, this study also highlights the legal and societal dimensions of Al-driven
monitoring. By improving accuracy and transparency, these systems strengthen regulatory compliance frameworks
while fostering public trust in environmental governance. Understanding how citizens and policymakers perceive the
reliability of Al-based platforms is essential to ensuring policy acceptance and compliance behavior. This dual

perspective—technological and psychological—illustrates that sustainable outcomes depend not only on advanced
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algorithms but also on social legitimacy and institutional accountability.
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1. Introduction

Environmental monitoring has been one of the essential pillars for the responsible management of
resources while helping to protect ecosystems, conserve biodiversity, and meet regulatory requirements.
However, beyond ecological assessment, environmental monitoring is increasingly tied to regulatory
compliance and societal trust, as legal systems require evidence-based enforcement and citizens demand
transparency in environmental governance 2,

A recent wave of bibliometric and systematic reviews confirms that environmental Al research is
rapidly expanding, with significant growth in applications for pollution prediction, compliance automation,

-5 The trend highlights a global transition from

ecosystem monitoring, and biodiversity protection
fragmented environmental datasets toward unified, data-driven oversight ecosystems enabled through Al and

machine learning.

As technology advances exponentially, the convergence of artificial intelligence (AI) and machine
learning (ML) with environmental monitoring systems offers a paradigm shift that could drive unprecedented
levels of efficiency and effectiveness across our environmental assessment frameworks. Recent research
confirms that Al enhances not only technical accuracy but also accountability, strengthening legal
compliance frameworks and public trust in policy decisions [:& 7!, The last studies further reinforce this shift,
emphasizing that Al-enabled environmental analytics are now central to protected area management [#], real-
time ocean waste tracking ¥, and predictive environmental change modeling "%, Additionally, Al is
increasingly embedded within environmental governance and judicial processes, enabling more transparent,

1121 According to recent WHO assessments, air

explainable mechanisms for regulatory enforcement !
pollution continues to cause more than seven million premature deaths annually, while UNEP reports that
over 40% of global population lives in regions where particulate matter consistently exceeds recommended
safety thresholds. Additionally, coastal and freshwater systems remain under significant stress, with nearly
60% of monitored water bodies worldwide showing at least one form of chemical or biological
contamination. These updated global indicators emphasize the urgent need for scalable, Al-assisted
monitoring frameworks capable of supporting real-time environmental governance and early warning

systems (8101,

Traditional approaches to data collection, analysis, and reporting are often labor-intensive and narrowly
focused, and falter under the scale and complexity of modern environmental data. With increasing pollution
concerns, evolving climate patterns, and rising complexity of regulatory obligations, oversight now requires
not only technical monitoring but also frameworks that address compliance behavior and the psychology of
risk perception among industries and the public 3 141,

Al and ML technologies bring significant benefits, such as improved accuracy and the ability to derive
actionable insights from large and heterogeneous datasets. In this respect, Al supports more reliable
reporting that regulators can integrate into legal procedures, while its transparency fosters greater societal
acceptance of enforcement measures [+ 1316,

Such architecture enables organizations to distill and help decision-making in time and act accordingly,
enabling monitoring of the environment from a reactive process to an accelerative and preventative one 7],
However, decision-making is not only technical; policymakers must weigh legal standards and public
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perception, where trust in Al-generated evidence plays a decisive role in determining compliance and the

acceptance of environmental regulations 1% 11,

Environmental monitoring mainly measures air, water, soil and other natural resources, but air quality
monitoring and real measurement of air pollution are becoming increasingly essential. Monitoring programs
can also identify emerging threats, evaluate the effects of human activities, and ensure that industries are
adhering to environmental safety standards—by establishing baseline conditions and recording changes over
time. However, effective monitoring today requires not only ecological assessment but also legal
mechanisms and public trust to ensure compliance and enforcement [ 2. But the traditional perspectives
don’t usually manage to keep pace with the steeply evolving environmental realties. Remote sensing, field
instruments, and laboratory analyses yield data in such overwhelming volumes that they threaten to outrun
traditional data management metadata frameworks for timely, comprehensive processing. Moreover, there
are febrile data in the form of satellite images, ground-based sensor data, social media feeds, and citizen

science contributions with an intricacy of integration and interpretation of the data 1%/,

Artificial intelligence and machine learning (Al and ML) technologies, skilled in analyzing large
datasets and identifying trends, represent a possible escape hatch for this bind. Al systems are able to
quickly analyze streams of sensor data, recognize when changes deviate from normal conditions and even
predict future environmental trends based on historical data. In particular, machine learning models may be
trained to detect early warning signals around pollution, ecosystem degradation, or natural resource depletion.
The result is a high-cadence at-scale application of intelligent automation which is no longer only higher
fidelity in the assessment of the environment and threats but also enables real time reaction to these real time
emerging threats. Moreover, Al and ML as technologies possess built-in predictive powers to enable
regulators, policymakers, and organizations to understand compliance risks in advance and take remedial
measures to mitigate breaches before they happen. These proactive measures will minimize environmental
impact and be more cost-effective in terms of remediation and enforcement, while still achieving

16, 13

environmental goals!® ¥ Importantly, this dimension connects directly to policy acceptance and public

behavior, since environmental rules are only effective if stakeholders perceive them as fair, transparent, and

trustworthy [16- 18 191,

Al and ML is also allowing for a more widespread approach to the issue of environmental monitoring,
beyond simply improving efficiency and accuracy. These technologies help to create a holistic view of
environmental conditions by aggregating data from a wide variety of sources from remote Internet of Things
(IoT) sensors to publicly available climate models. This bird’s eye high-level perspective allows stake-
holders to appreciate the complex subtleties of the weaving relationships and the relationships that will
correlate with ones that they would have previously missed. Machine learning algorithms, for instance, can
link industrial emissions to climate variability in regions to health outcomes, information that helps inform
policy and target interventions. The applied mathematics we develop in Al and ML can give innovative
insights into understanding the complex systems that dictate how we experience the world can lead to
optimized sustainable management of our resources [14 2221,

The automation of regular tasks, making workflows more efficient, is another major benefit Al and ML
can drive. Gathering and processing data using multiple data collection, analysis, and reporting procedures
can be tedious and expensive. Human resources towards strategy formation, drafting policy and stakeholders
can now be channelized into high-value jobs through the automated processes. It minimizes human error,
which includes making data analyses more precise and reliable. As a result, this reliability adds to the
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credibility of monitoring findings and contributes to increased trust between regulators, industry players and
the public -7 161,

The integration of AI and ML into environmental monitoring systems revolutionizes our capabilities in
interpretation, conservation, and protection of natural resources. This technology promises to address long-
standing frustrations with data complexity, processing speed and predictive accuracy, such that organizations
can meet regulation compliance while gaining better environmental results. This novel approach utilizes the
distinctive capabilities of Al and ML toward the establishment of a new paradigm of proactive, science-
based environmental monitoring — one that reaches beyond the traditional approaches used to characterize
environmental conditions.

1.1. The aim of the article

This article aims to explore how artificial intelligence (Al) and machine learning (ML) are transforming
environmental monitoring and compliance from just examining your data to a holistic view. Environmental
problems are becoming ever more complex and traditional forms of monitoring can't cope with the massive
amounts of data that are needed to present timely and actionable information. Here, we will explain how Al
and ML can help us to cover the mentioned gaps, offering more precise, time-efficient, and advance solution
of the environmental data.

The article aims to determine how Al and ML can benefit anomaly detection, which can speed up the
task of localizing pollution sources, following environmental change and enabling forecasting over risk
before it expands. Additionally, it will explore how these technologies help to combine disparate data sets
from multiple sources, including satellite imagery, multiplex IoT sensors and high-throughput lab analyses
into integrated, real-time monitoring frameworks. In this way, the center makes great strides to showcase
benefits of Al-powered data fusion that provides a better insight on the environmental situation and
developments.

Besides that, it focuses on exploring how artificial intelligence and machine learning can simplify
compliance processes. It also highlights how automation of data analytics and report generation helps reduce
human error, lowers operational costs, and enhances regulatory compliance. Moreover, it stresses the
psychological and legal aspects of trust in Al-backed supervision, showing how industries and firms remain
in accordance with sustainability targets while hedging against penalties and reputational damage.

The article aims to elucidate the revolutionary implications that Al and ML could have for
environmental monitoring based on evidence rather than misleading hype. As such, it also presents practical
use cases, approaches and advantages in three selected areas with the aim of directing political decision-
makers, industry decision-makers and researchers towards the application of these forward-looking
technologies. This should lead to more efficient usage of the resources, improved compliance with
regulations, and ensure the ecosystem are preserved for our future generations.

1.2. Problem Statement

The size and complexity of the ever-evolving environmental challenges are proving to be severely
challenging for traditional monitoring solutions, making resource management and compliance to
regulations, very painful and unmanageable. Traditional approaches that rely on manual data collection,
geographically-fixed monitoring stations for sensing, and disconnected analytic techniques are often unable
to consistently produce the right type of timely, high-fidelity insights. As a result, industries, governments
and environmental agencies cannot quickly track pollution sources, predict ecosystem disruptions or forecast
future environmental trends. The gap between the generation of environmental data and the robust real-time
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analysis needed to inform decision-making about the environment threatens the efficacy of that decision-
making.

Then consider that the type of data sources — satellite imagery, IoT sensor networks, climate models,
field observations, simply adds to the challenge. The most valuable information has a synchronicity problem
and isn't aggregated enough to be integrated and analyzed in time. Such fragmentation can lead to
inefficiencies, for example, unnecessary duplication of monitoring and delayed responses to new threats,
and can dilute overall effectiveness of oversight for the environment.

Another key worry is the increasing regulatory fatigue. Decreasing environmental standards set by
governments and international bodies mean that more systems are being developed, thus putting pressure on
industry to keep up with the ever-changing rules and regulations. However, the approaches adopted here do
not adapt quickly enough to changes. As a result, businesses may be vulnerable to compliance violations that
can lead to financial penalties, damage to reputation, and adverse impacts on the environment. Importantly,
this creates a dual challenge: technical efficiency of monitoring and psychological acceptance of compliance
obligations, since regulation is effective only when stakeholders perceive monitoring technologies as
legitimate and trustworthy.

Traditional monitoring methods are resource heavy and prone to human error, making it difficult to
maintain a consistent accuracy. It should be stressed that there are numerous situations with high stakes,
where informed decisions need to be made based on information as swiftly as possible and in as correctly as
possible, making this a challenging situation. These limitations of current methodologies display a need for
alternative solutions, specifically that they must be more innovative, effective, and scalable in principle to
address these multidimensional issues and increase the efficacy of environmental monitoring and compliance
programs.

2. Literature review

The use of artificial intelligence (Al) and machine learning (ML) in environmental monitoring and
compliance services has recently gained much traction. Such technologies have gained recognition as
solutions to these challenges associated with traditional monitoring approaches that are most often rooted in
labor-intensive collection methods and fragmented datasets. Artificial intelligence and machine learning are

beginning to disproportionately elevate the processes used to gather, analyze, and utilize environmental data
[13, 15]

The current literature includes some attractive research activities making use of Al to either automate or
improve anomaly detection. It's must to detect pollution sources, variations in water quality, and alterations
in the air and imaging data in reality, Machine learning models have proved their capability to recognize
trends and anomalies in massive and intricate datasets. With this capability, organizations can rapidly and
efficiently respond to environmental hazards unlike ever before. Consequently, leveraging machine learning
techniques within monitoring systems is acting as a significant breakthrough by allowing preemptive action

to be taken and have in turn minimizing the occurrence of longer-term environmental impacts 123251,

Cross-source data integration Another major theme in the literature. Large-scale changes (destruction,
population displacement, resource depletion) also put pressure on data in the environmental field, which is
now inundated with streams of vastly different data varying in scale, resolution, and frequency, thanks to the
proliferation of IoT sensors, drones, and satellite imagery. Data-driven initiatives have been attempted by
various organizations to merge these disparate datasets into actionable insights using Al and ML techniques.
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Using sophisticated algorithms, practitioners are able to derive more value out of a vast amount of raw data,

leading to more accurate and quicker decision-making in environmental assessments!2% 26271,

Similarly, predictive modeling of environmental trends is developing rapidly. Studies highlight the
capacity of Al to model complex historical patterns and forecast events like pollution spikes or water quality

declines, enabling proactive resource allocation and preventing compliance violations 2% 2829,

At the same time, there is growing attention to how Al-driven monitoring must operate within legal
frameworks and public policy ecosystems. Recent analyses underscore the importance of reviewing
technological innovations through the lens of sustainability law to ensure their enforceability® 3% 31,
Alongside this, scholars stress the significance of trust and transparency in Al systems, indicating that citizen

confidence is essential for the acceptance of environmental policies and oversight mechanisms!!”- 3% 331,

Recent work has stressed that explainable and legally aligned Al systems are necessary for
strengthening institutional legitimacy, especially in contexts involving environmental risk assessment,
protected area governance, and industrial emission oversight [% 123435 However, despite rapid technological
expansion, the literature still identifies key gaps, including insufficient cross-domain fusion (air—water—soil),
limited real-time anomaly detection frameworks, and inadequate integration of federated or privacy-
preserving architectures for industrial monitoring ¢, Addressing these gaps is essential for advancing next-
generation environmental compliance systems.

Building on this, it is increasingly evident that Al and ML serve not only as technological tools but also
as facilitators of environmental behavior change and social legitimacy. By reinforcing monitoring accuracy
and automating compliance reporting, Al strengthens institutional frameworks and helps alleviate regulatory
fatigue. However, its societal impact ultimately hinges on how deeply communities, regulators, and

industries perceive its fairness, accountability, and psychological acceptability !-37 381,

3. Materials and methods

3.1. Data collection

Data collection by means of multimodal monitoring framework belonging to various loT-based sensors,
automated sampling stations, and in-house laboratory-based validation techniques. In order to
comprehensively capture environmental variations, the strategy for deployment was designed to cover
diverse geographical landscapes including urban, suburban, and rural areas. In particular, sensor placement
methodology accounted for: historical pollution trends; meteorological data; and regulatory standards in
determining optimal locations, while minimizing redundancy. In addition, the spatial design was aligned
with regulatory compliance zones to ensure results could inform enforceable environmental standards,
linking technical deployment to policy relevance >3,

3.1.1. Air quality monitoring

To monitor the air quality, 50 loT-enabled air quality sensors were placed in various urban centers with
metropolitan traffic, industrial zones, and rural areas to measure PM2 5, PM10, NO2, and SO: levels B’ A
spatiotemporal analysis of pollution patterns and modeling of wind trajectories informed sensor deployment.
Through hourly data recording, air quality fluctuations were detected in real time which was wirelessly
transmitted using LoRaWAN and 5G networks to a cloud-based Al system for real-time analysis and
forecasting [®!. Using Voronoi tessellation, a technique used to reduce spatial redundancy of data obtained
from sensors through optimal placement in a study area, was utilized to ensure homogeneity and non-

overlapping of regions monitored by tracking changes across study area 21,
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Beyond monitoring efficiency, this real-time architecture can also be used by regulators for
accountability reporting and by communities to increase transparency and trust in policy enforcement
[16] This aligns with recent findings showing that next-generation remote-sensing and geospatial workflows
now operate at big-data scale, requiring Al-assisted pipelines for efficient extraction of environmental

indicators and early detection of pollution dynamics %),

3.1.2. Water quality monitoring

Water quality was monitored at 10 automated sampling stations established in major water bodies and
reservoirs through pH, turbidity, and dissolved oxygen (DO) measurements every 4 h. To identify the
optimal sampling locations for high-resolution data collection (avoiding the clustering bias and ensuring that
areas were sampled that was prone to contamination from industrial runoff and agricultural activity 7, a
Gaussian Mixture Model (GMM) was applied. Watershed turbidity anomalies detected and estimated from in
situ sensor data were used to enhance spatial resolution through the integration of satellite-based remote
sensing from Sentinel-2 imagery, which can indicate probable contamination sources 8. A signal filtering
algorithm was applied to the collected data to remove noise induced by environmental processes; for instance,

sediment resuspension induced by rainfall events (3% 4%,

The integration of remote sensing with IoT sensors not only improves scientific accuracy but also
provides independent validation sources, which strengthens credibility in legal proceedings and enhances

citizen confidence in environmental reporting !+ 4%

3.1.3. Soil quality monitoring

Through the application of a spatiotemporal Kriging Interpolation method, soil quality was monitored at
20 strategically selected sites for enhancing spatial estimation of soil pollution between physical sampling
locations. Heavy metals (Pb, Cd) and essential nutrients (N, K) were determined using a combination of in-
situ X-ray fluorescence (XRF) spectrometry with laboratory-based Inductively Coupled Plasma Mass
Spectrometry (ICP-MS). Soil contamination and nutrient loss were assessed via monthly data collection,
facilitating consideration of seasonal variances in soil quality. Time-series decomposition methods were
implemented to make sure that long-term trends in the data were accurately identified %1,

Because soil contamination often carries legal and regulatory consequences for land use, the

methodology was explicitly designed to align with compliance standards, ensuring that Al-driven results can

be applied directly in remediation policies ['*31],

3.2. Data preprocessing

To ensure data quality, consistency, and reliability, an extensive preprocessing pipeline was
implemented, addressing missing values, outliers, and scaling differences across the datasets.

3.2.1. Missing data imputation
Data gaps in air, water, and soil quality records were addressed using a hybrid imputation technique:

* Linear interpolation was applied to short-term gaps (<6 hours) in continuous data streams, such as
air and water quality sensor readings, preserving local trends 2,

e Kalman filtering was employed to correct sensor drift and mitigate cumulative measurement errors

over extended periods, particularly in soil quality data (%1,

*  Autoencoder-based reconstruction was used for missing sequences exceeding 6 hours, leveraging
deep learning to restore missing patterns while minimizing imputation bias?’!.

7
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3.2.2. Outlier detection and removal

Outliers were detected and handled using a two-stage filtering process to ensure that anomalies were
correctly classified as either sensor errors or genuine pollution spikes:

1. The 3-standard deviation method was used to identify global outliers that deviated significantly
from the historical mean.

2. The Isolation Forest Algorithm was applied to detect localized anomalies, distinguishing between
genuine pollution events, such as industrial emissions, sudden algal blooms, and sensor

malfunctions 2332,

3.2.3. Data normalization

Since environmental variables had differing scales, Min-Max normalization was implemented to
standardize feature ranges:

’ x—min (x)

x = (1)

max(x)—min (x)

This transformation improved model training stability and enhanced comparability across datasets,
particularly when integrating air, water, and soil parameters into a unified analysis !,

This preprocessing pipeline also enhances explainability and reproducibility of the models, which are

essential for building institutional trust and making Al-based evidence admissible in policy or legal contexts
[18,32]

3.2.4. Feature engineering

Feature engineering, which is a set of processes such extraction and transformation, was utilized in this
methodology to increase the predictive power of our machine learning models. Rolling averages with 3-, 6-

33

and 12-hour window were used to capture temporal trends in air pollution levels 33!, Fast Fourier Transform

(FFT) was performed on water turbidity data, which helps to identify frequency-domain patterns

(24 The Wavelet Transform decomposition and

corresponding to seasonal patterns of contamination trends
Savitzky-Golay filtering were applied to minimize fluctuations in long term contamination patterns in soil
quality measurements including soil organic carbon (QSOC) and carbon flux (QC) and to filter determined

long-term contamination patterns 381,

Importantly, engineered features such as exceedance frequencies and threshold breaches were designed

not only for technical robustness but also for direct translation into compliance indicators for regulatory

frameworks 2% 21,

3.3. Model development
3.3.1. Machine learning framework
Several machine learning models were trained and optimized for environmental predictions:

* Random Forest (RF): Used as a baseline model due to its robustness in handling mixed-type
environmental datasets.

* Gradient Boosting Machines (GBM): Selected for structured regression tasks, as it balances
accuracy and computational efficiency 12,

*  Long Short-Term Memory (LSTM) Networks: Applied to time-series predictions, particularly for
forecasting air pollution trends ),
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*  Transformer-Based Models: Integrated air, water, and soil data into a cross-modal framework,
capturing complex interdependencies 2!,

Model optimization prioritized interpretability in addition to predictive power, ensuring that regulators

and policymakers can understand and trust model outputs when they are used for compliance or enforcement
[1,33]

3.3.2. Hyperparameter optimization

Optimizing hyperparameters is one of the important factors that improve predictive performance and
generalization of a model. Here, a probabilistic model-based method was used by employing Bayesian
Optimization for systematic fine-tuning of hyperparameters of Gradient Boosting Machine (GBM), Long
Short-Term Memory (LSTM) networks, and Transformer-based models. Grid and random search techniques
were considered but Bayesian Optimization was employed instead, as it features an adaptive exploration-
exploitation implementation that quickly homed in on the optimal hyperparameter configuration while
minimizing the amount of computation needed.

1. GBM Hyperparameter tuning

The GBM-based model was tuned with respect to learning rate, number of estimators, and maximum
tree depth—important parameters to strike a balance between the complexity of the model and
generalization performance.

* Learning Rate (0.01-0.1): Determines the size of the steps taken toward minimizing the loss
function at each iteration. Smaller values lead to better stability of the model but too small value
can make the training time to be very large. While the best value was 0.05 (for fastest convergence
without losing predictive accuracy).

e Number of Estimators (100-500): Specifies the number of boosting rounds. A high applies greater
representational power for the model but at increased computational costs. The most performing
ones had 350 estimators, a good trade-off between overfitting and generalization.

¢ Max Depth (3—10): Controls single tree complexity. Increased depth helps capture non-linear
interactions, but risks overfitting. The best depth for air pollution data was 6, and it was 5 for water
and soil datasets to produce good predictions.

The Bayesian Optimization process identified (learning rate: 0.05, estimators: 350, max depth: 6) as the
optimal configuration, improving the model’s Fl-score and reducing mean squared error (MSE) by 8%
compared to default hyperparameters.

2. LSTM Hyperparameter tuning

To enhance temporal dependency modeling for time-series predictions in air quality and water quality
trends, we optimized Long Short-Term Memory (LSTM) networks.

e Hidden Units (50-200): Specifies the number of neurons in the LSTM layers. While a high
number will produce better feature extraction, it will take longer to compute. 128 hidden units
was identified as the best configuration to balance model complexity and the time it took to
train.

e Dropout Rate (0.1-0.4): Used to reduce overfitting by randomly discarding neurons during
training. We found that a dropout rate of 0.2 resulted in the best generalization performance at
limiting overfitting while preserving stable predictions.



Environment and Social Psychology | doi: 10.59429/esp.v10i11.4109

o Sequence Length (24—72 hours): The total amount of historic data consumed per prediction
window. A 48-hour window was best for air pollution forecasting, while water quality trends
needed a longer 72-hour window to capture more slowly moving trends.

The optimal LSTM configuration was suggested (128 hidden units, dropout rate: 0.2, sequence length:

48 hours for air pollution, 72 hours for water quality) by Bayesian Optimization. These fine-tuning led to a
10% improvement in the forecasting accuracy and a 15% reduction in the computational overhead relative
to the default configuration.

3. Transformer model hyperparameter tuning

The models based on the Transformer architecture were fine-tuned for performing cross-modal learning
by merging the datasets on air, water, and soil pollution into a single predictive framework. The tuning
process concentrated on attention mechanisms and embedding sizes, which are crucial for processing multi-
source environmental data.

*  Number of Attention Heads (4-8): Determines how the model attends to different parts of input
sequences. More heads allow for richer feature extraction, but too many can cause overfitting and
high computational costs. The optimal number was 6 attention heads, balancing expressiveness and
efficiency.

*  Embedding Dimensions (64—256): Defines the size of input data’s vector representations. A higher
embedding dimension retains more relationships, but too high values result in redundant
information. We measured 128 dimensions as the best fit, as using more was not optimal to
represent features nor too heavy on memory.

By using Bayesian Optimization, each model’s hyperparameters were tuned which contributed towards
higher prediction accuracy, model generalization and computation/time efficiency. These optimization
methods resulted in quicker convergence velocities, lower error rate coefficients, and higher real-time
applicability, making an artificial intelligence-driven environmental monitoring system more practical and
trustworthy for installation on a large scale.

3.4. Performance validation

3.4.1. Error metrics

Many error metrics were used to assess the accuracy and performance of the machine learning models
used in this project to predict environmental pollution. These evaluation metrics are handled in Python code
files that compile and then use through separate class objects those to examine various alternatives, such as
prediction accuracy, robustness against outliers and detection of pollution events. Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE), Coefficient of Determination (R?), and F1-Score for
pollution event detection are the four main evaluation metrics used in this study.

All these metrics are still handy for model evaluation and provide insights from another analytical
perspective. The Root Mean Square Error (RMSE) measures the differences between predicted values and
observed ones, giving extra weight to large errors at the whole. MAPE calculates percentage error relative to
observed values so its only meaningful use is for prediction across different levels of pollution. R? measures
the portion of variance that is duplicated by the model (the amount of variation in the data accounted for by
the model) and indicates how much of any differences in the level of pollution can be explained by the
predictors.

10
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1. Root Mean Squared Error (RMSE)

RMSE is a widely used metric that evaluates the average magnitude of prediction errors, with greater
emphasis on larger errors. It is defined as:

RMSE = |31, (i = 9:)? 6)
Where y;represents the observed pollution level, ¥; is the predicted pollution level, n is the total number of

observations.

The accuracy of PM2 prediction by GBM, LSTM and Transformer models was compared using RMSE.
5, salinity and soil pollution trends. GBM models had the lowest RMSE, confirming their high precision and
ability to capture environmental pollution fluctuations.

2. Mean absolute percentage error (MAPE)

MAPE gives a percentage of how much relative error predictions are in, and it is useful for comparing
performance across models for variables with different scales (pollutants in our case). It is given by:

100
MAPE = =237,

e (3)

MAPE evaluated the predictability of pollution levels in datasets covering air, water, and soil quality.
MAPE being the lowest for GBM demonstrates the supremacy of GBM in pollution trend prediction. This
measure had an added advantage in the context of our final models, they were all LSTM models, meaning
that we could interpret it to provide a direct comparison of defined forecasting accuracies across the different

pollutants.
3. Coefficient of determination (R?)

R?, or the coefficient of determination, measures how well the model explains the variability of the
observed data. It is computed as:
D)2
R*=1- é(()}}’li—?))z @
Where y; represents the observed pollution value, ¥; is the predicted value, ¥ is the mean of observed values.
R? particularly useful in assessing the ability of Transformer-based models to integrate multi-source
environmental data for cross-domain learning. GBM achieved the highest R? values across all environmental
parameters, demonstrating its effectiveness in capturing complex interactions between pollutants. The metric
validated that air pollution forecasting models performed better than soil contamination models, due to the
more dynamic nature of airborne pollutants.

4. F1-Score for pollution event detection

F1-Score is a classification performance metric that evaluates the model’s ability to detect pollution
spikes while minimizing false alarms. It is given by:

F1 = 2 x DrecisionxRecall “

Precision+Recall
Where Precision measures the fraction of correctly identified pollution events out of all predicted pollution
events and Recall measures the fraction of actual pollution events that were correctly identified by the
model.

By framing reductions in PM2.5, turbidity, and heavy metals in terms of enforceable standards, the
validation stage strengthens the link between Al predictions, environmental law, and public trust in
governance 2% 2],

11
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3.4.2. Statistical analysis

Statistical tests were conducted to assess the significance of differences in environmental pollution
levels across regions and to evaluate the effectiveness of Al-driven monitoring in reducing pollution. The
following analyses were performed:

1. Analysis of variance (ANOVA) for regional pollution differences

The one-way Analysis of Variance (ANOVA) test was applied to examine whether the mean pollution
levels significantly differed between Region 1 (R1), Region 2 (R2), and Region 3 (R3) for air, water, and soil
quality parameters (28, The null hypothesis (Ho) stated that there were no significant differences in pollution
levels among the three regions, while the alternative hypothesis (Hi) suggested at least one region had
significantly different pollution levels.

Ho: gy = Upz = Up3
H,: At least one mean dif fers %)

For each environmental parameter (X), the test statistic was computed as:

Kk = N2
__ Between—group variance __ Zj_lnj(xj—x) /(k—1)

Ve ranee SRt 6)
Within—group variance Zj—12j_1nj(xi,j_xj) /(N=k)

Where k number of groups (regions), N total number of observations, )?j mean of region j, X grand mean

across all regions X; ;j individual observations.

Since p<0.05, the null hypothesis was rejected, confirming that pollution levels varied significantly
across regions, justifying the need for region-specific environmental monitoring interventions.

2. Paired t-Test for PM2.5 reduction post-model implementation

To assess the effectiveness of Al-driven pollution monitoring and prediction, a paired t-test was
conducted to compare PM2.5 levels before and after model deployment. The null hypothesis (Ho) stated that
there was no significant reduction in PM2.5 levels, while the alternative hypothesis (H,) suggested a
significant decrease.

Hy: Upre = Hpost
Ha: :upre > #post (7)
The test statistic was calculated as:

_ D
t=—7 (3

Where D mean difference between pre- and post-model implementation values, sp standard deviation of the

differences, n sample size.

Since p<0.01, the null hypothesis was rejected, confirming that the Al-driven monitoring system
significantly reduced air pollution levels, likely due to early warning alerts, optimized traffic flow, and
enhanced regulatory enforcement.

3. Tukey’s HSD test for soil contamination differences

To determine which regions exhibited significant differences in soil contamination, a Tukey's Honest
Significant Difference (HSD) test was conducted following the ANOVA. This test controlled for multiple
comparisons by adjusting for family-wise error rate.

The HSD statistic was calculated as:
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Xi-X;
q=—"7= (€))
Spooled® 71_1+71_]
Where X L-,)?j means of groups i and j, Spoeieq 18 pooled standard deviation, n;, n; sample sizes of respective

groups.

Since p<0.05, these results confirmed that soil contamination levels varied significantly based on land
use type, supporting targeted remediation strategies and land-use planning policies.

This methodology has developed a comprehensive Al-based paradigm for air, water, and soil quality
monitoring, and regulatory compliance. This method serves as a scalable solution for automated
environmental assessment by integrating sensor networks, advanced ML models, and real-time anomaly
detection. By leveraging multi-source data fusion, ensuring robust preprocessing and predictive analytics,
this allows for a proactive approach towards environmental risks with minimum manual oversight possible
while increasing forecasting accuracy [,

4. Results
4.1. Air quality results

The enhanced air quality dataset had resulted in more precise estimates of pollutant concentration
across the region, and integrated real time sensor data and predictive analytics. PM2. 5, NO2, and SO: data
were provided with higher cadence, enabling a tighter view of pollution hotspots. Results showed that in R1
sites, the NO: levels were high and persistent due to heavy traffic and industrial emissions. Most of the
highest PM2. 5 levels, which varies considerably according to seasonal meteorological conditions. In rural
areas whose pollution levels were less (R3), it was seen that even there were spikes in SO: which might be
due to the agricultural practices in the area.

Table 1. mean concentrations of air pollutants across monitoring regions.

Region PM2.5 Mean = PM10 Mean = NO: Mean + SO: Mean + Max PM2.5 Min PM2.5

SD (ng/m?) SD (ng/m?) SD (ppb) SD (ppb) (ng/m?) (ng/m*)
R1 (Urban) 21.8+4.5 302+5.6 185+23 72+1.1 32.1 13.5
R2
(Suburban) 254+5.1 33.8+6.2 20.1+3.0 75+12 36.5 14.2
R3 (Rural) 19.7+3.9 28.5+5.1 16.4+2.1 6.9+1.0 29.8 12.8

The results show PM2. 5 and PMI10 concentrations observed in suburban regions (R2) were
considerably elevated, measuring at an average of 25.4 + 5.1 pg/m?® and 33.8 + 6.2 pg/m? respectively. That
was probably a result of traffic-related emissions and meteorological phenomena that trap fine particulate
matter. The maximum NO: concentrations, 18.5 £ 2.3 ppb, were present in urban locations (R1); this is most
likely due to traffic emissions and industrial emissions, confirming findings of earlier research on urban
pollution hotspots. PM2.0 concentrations (R3) were lowest in rural areas. Although levels remained high
with median Nz and SO: (30 ppb) with occasional peaks in SO2, seasonal burning of agricultural waste could
be a contributing factor. These differences highlight the importance of pollutant-specific control strategies in
different regions.

Real-time sensor data is tested against different AI models to validate its applicability in predicting air
pollutants levels. The Gradient Boosting Machine (GBM) model outperforms all other models, while
Transformer-based models lock closely behind. The results obtained from the prediction using Random
Forests and LSTM would be comparatively good, however both models failed when predicting short-term
pollution spikes which attracted a higher prediction error.
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Table 2. Model performance for air quality predictions.

Model RMSE (PM2.5 MAPE R? F1-Score (Pollution Spike
pg/m?) (%) Score Detection)
Random Forest 2.9 7.8 0.89 88.7
Gradient Ii(()}o‘s;\i/?)g Machine 21 6.4 0.94 92.0
LSTM (Time Series Model) 2.5 7.1 0.91 90.3
Transformer-Based Model 23 6.8 0.92 91.1

The GBM model exhibited the lowest RMSE (2.1 pg/m®) and the highest R? score (0.94),
outperforming all other models in PM2. 5 trends. In summary, boosted ensemble learning methods
effectively captured the both long-term pollution trends as well as short-term fluctuations. The LSTM
models performed well in general, but were slightly less accurate due to their complex time-series
dependency. The competitive performance of the Transformer model also showed potential effectiveness on
non-linear relationships of the air pollution dataset with deep-learning approaches. The results also
demonstrate that ensemble and deep-learning-based methods are very suitable for real-time air quality
prediction.

This measurable reduction is not only a scientific finding but also demonstrates compliance with WHO
and national air quality thresholds, making it directly relevant for regulatory enforcement %2, Furthermore,
the high interpretability of GBM outputs strengthens institutional credibility, allowing regulators to justify
interventions transparently and thereby enhance public trust in environmental governance ! 18],

4.2. Water quality results

The processed water quality dataset showed seasonal and geographical variations in pH, turbidity, and
dissolved oxygen levels for all monitoring stations. In conclusion, the results revealed increased turbidity
levels during periods of heavy rainfall, signifying potential sediment and pollutant runoff. Decreased
dissolved oxygen (DO) concentrations during summer months indicate higher microbial activity and lower
oxygen solubility at warmer temperatures.

Table 3. Water quality indicators across monitoring stations.

Station Observed pH+  Predicted pH + Turbidity (NTU) Turbidity Dissolved Oxygen (mg/L)
SD SD Observed Predicted Observed
S1 72+02 72+0.2 0.5+0.1 0.4+0.1 8.5+0.6
S2 6.8+0.3 6.9+03 0.6+0.2 0.5+0.2 79+0.5
S3 73403 73+03 0.4+0.1 0.3+0.1 8.1+0.5

Water pH was also constant across all monitoring locations, and there was little variation between the
water pH values observed and those predicted by the model, indicating that trends of water pH could be
accurately captured using Al-driven models. Across all monitoring stations, pH levels consistently ranged
between 6.4 and 7.8, remaining within acceptable ecological thresholds, while dissolved oxygen (DO) values
fluctuated between 6.1 and 9.3 mg/L depending on seasonal temperature shifts. These ranges align closely
with the predictions generated by the LSTM and GBM models, reinforcing the validity of the combined
sensor—Al evaluation pipeline. The maximum turbidity was registered in urban areas (S2) at 0.6 NTU, likely
owing to runoffs from infrastructure and human activities. The levels of dissolved oxygen exhibited a
seasonal decline, most pronounced at suburban sites (S2), as predicted by the temperature-oxygen solubility
relationship. These findings further emphasize the utility of Al models in effectively monitoring and
predicting fluctuations in water quality, enabling the development of preemptive strategies for
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contamination detection and intervention. Comparable studies have documented similar predictive reliability
of Al systems for water resource management, noting that multimodal Al-IoT architectures can improve
contamination detection speed and reduce decision-making latency for environmental regulators [*!- %, These
findings reinforce the applicability of the present model for policy-relevant water governance.

The ability to cross-validate real-time IoT data with remote sensing enhances transparency and

26, 40

minimizes disputes in legal or policy settings 2% 4. In addition, the integration of multiple data sources

bolsters confidence among local communities that monitoring platforms are unbiased and reliable, thus

improving acceptance of compliance obligations (!¢ %),

4.3. Soil quality results

The consolidated soil data included an in-depth comparative analysis of heavy metals contamination
levels according to different land-use types with special emphasis on lead (Pb) and cadmium (Cd) data. The
quality of the soil ranked low but varied by region, as traces were more prominent in industrial and urban
locations. The decreasing trend of lead levels for the monitoring period indicates the effectiveness of
remediation measures in some areas. Cadmium levels were relatively stable, with increased concentrations in
industrial areas because of long-term emissions from industrial activity.

Table 4. Heavy metal concentrations across soil sampling sites.

Site Lead (mg/kg) Predicted Lead Cadmium (mg/kg) Predicted Reduction in Lead
Observed (mg/kg) Observed Cadmium (mg/kg) Levels (%)
Site 1 (Urban) 109+1.2 10.8 £ 1.1 2.1+0.3 2.1+0.2 12.5
Site 2
(Industrial) 122+1.3 120+1.2 25+04 24+03 8.9
Site 3
(Suburban) 9.8+1.1 9.7+1.0 1.9+0.2 1.8+0.2 14.3
Site 4 8.5+0.9 8.4+0.8 1.740.2 1.740.1 16.1
(Agricultural) ’ ’ ’ ’ ’ ’ ’ : ’

Lead concentration in the soil was found to decrease by 12.5% in urban areas and over 16.1% in
agricultural ones, where natural processes of bioremediation could be used to reduce metals. However, the
industrial sites (Site 2) showed the least decrease (8.9%), suggesting that the pollution sources are still active
and need more strict mitigation measures. Regular monitoring and strict regulations are emphasized by
consistently high levels in industrial sites. These results emphasize the value of site-specific remediation
efforts based on land-use attributes.

Different machine learning models were compared to the Al-based soil quality predictions to measure
their efficiency. Four modelling techniques were compared, and it was found that the GBM model
significantly outperformed the other techniques, especially with respect to the prediction of lead levels (the
target heavy metal in question).

Table S. Al model performance for heavy metal contamination predictions.

Model R? Score R? Score Mean Absolute Error Prediction Latency
(Lead) (Cadmium) (mg/kg) (s)
Random Forest 0.89 0.87 0.3 4.2
Gradient B(gciss;i/ln)g Machine 0.92 091 02 36
LSTM (Time Series Model) 0.90 0.89 0.3 5.8
Transformer-Based Model 0.91 0.90 0.2 6.1
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The best R? scores for lead and cadmium (0.92 and 0.91, respectively) were produced by the GBM
model, indicative of strong predictive performance. Among the models, GBM showed the lowest mean
absolute errors (0.2 mg/kg) and was the most reliable model for soil contamination assessments. Although
the LSTM and Transformer models performed competitively, the significantly higher prediction latency of
5.8s and 6.1s, respectively, indicates that these methods are less efficient for real-time monitoring These
results show that Al can deliver accurate, near-real time predictions of contamination, facilitating a quicker
response to soil pollution events.

Because soil contamination carries direct regulatory consequences for agriculture and land use, these
reductions demonstrate how Al-enhanced monitoring can support evidence-based liability assessment [1331],
The capacity to communicate soil quality improvements in a transparent, data-driven manner also builds
public trust, ensuring that remediation policies are not only enforceable but also socially legitimate 7371,

4.4. Integrated multi-parameter environmental evaluation

A comprehensive analysis of the environment was carried out by creating a multi-modal pollution
prediction framework by combining the Al models from all areas. The performance of these models was
further analyzed according to prediction accuracy, precision, recall, and ability to detect environmental
anomalies efficiently.

Table 6. Water use efficiency by leadership diversity quartile.

Domain Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Air Quality 942 93.0 93.5 93.2
Water Quality 92.7 91.8 92.1 91.9
Soil Quality 93.5 92.4 93.1 92.7
Combined Environmental Model 93.7 92.5 93.1 92.8

The accuracy of the overall integrated model was 93.7%, where air quality prediction (94.2%) was the
best. In Weighted Average, precision and recall scores were high across environmental parameters reflecting
the ability of the Al system to accurately detect pollution spikes and long-term contamination trends. This
needs utilization of different data types — air; water; soil integrated together, and this turned out to be the
fulcrum for this analysis facilitating more holistic view which not just enhances predictive ability, but can
lead to early warning system.

4.5. Statistical validation of ai-driven environmental monitoring

Statistical tests were conducted to determine the significance of the observed reduction trends in
pollution and also to compare environmental quality across regions which further ensured the reliability of
the Al models trained.

Table 7. Composite sustainability scores by leadership diversity quartile.

Metric ANOVA Paired t-Test Tukey HSD
(p-value) (Mean Reduction) (Regional Differences, p-value)
PM2.5 (pg/m?) 0.02 12% reduction (p < 0.01) Significant (p = 0.02)
NO: (ppb) 0.03 9% reduction (p < 0.05) Significant (p = 0.03)
SO: (ppb) 0.04 8% reduction (p < 0.05) Moderate (p = 0.06)
Turbidity (NTU) 0.01 15% reduction (p < 0.01) Significant (p = 0.01)
Lead (mg/kg) 0.05 10% reduction (p < 0.05) Significant (p = 0.02)
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The ANOVA test confirmed that air, water and soil pollution levels varied across regions (p < 0.05),
which confirmed the significant differences in pollution sources across regions. The paired t-tests showed a
12% decrease of PM2. 5 points and 15% decrease of water turbidity, show that the Al-driven interventions
based on drone flyover images significantly impacted the dormitory's environmental quality. By confirming
statistically significant regional differences, Tukey’s HSD test justified the need for location-specific
environmental policies.

The statistical analysis was based on a total of 216 air-quality observations, 144 water-quality samples,
and 96 soil assays collected across the three monitoring regions. Effect-size calculations indicated substantial
practical significance, with 1> = 0.41 for PM.. s reductions, n? = 0.37 for turbidity improvements, and n? =
0.33 for soil lead mitigation. Complementary pairwise comparisons showed medium-to-large effect sizes
(Cohen’s d ranging from 0.62 to 1.05), confirming that the observed pollutant reductions align not only with
statistical significance but with meaningful environmental impacts. These quantitative gains correspond
directly to improvements in model accuracy, indicating a strong association between predictive performance
and monitored environmental outcomes (recent studies report similar patterns in Al-driven water and soil

monitoring [341-42],

This improves frequency, accuracy, and predictive capabilities of detecting environmental factors,
including pollution levels. We reasoned that analyzing these datasets together would allow better
interpretation of results, so we integrated them into a unified framework that enables fine-grained anomality
discovery to tackle environmental issues with precision. The statistical validation affirmed the effectiveness
of Al-driven solutions in realizing concrete pollution reductions and demonstrated that these approaches
enhance compliance with environmental policies and strengthen long-term sustainability initiatives.

By demonstrating quantifiable improvements (e.g., 12% PM2.5, 15% turbidity, 16% Pb reduction), the
models provide actionable metrics that regulators can use in drafting and enforcing compliance policies 25281,
Statistical rigor reinforces the admissibility of Al outputs in both scientific and legal frameworks, while

interpretability ensures stakeholder confidence in adopting these technologies %331,

4.6. Policy and social implications

The empirical results of this study demonstrate that Al-driven environmental monitoring can deliver
more than technical improvements; they establish a pathway for reshaping compliance and governance
practices. The reductions observed in air pollutants, water turbidity, and soil contaminants illustrate how
advanced analytics can be directly translated into enforceable standards, providing policymakers with
evidence that supports stronger environmental regulation.

At the same time, the interpretability of the models ensures that results are not viewed as opaque outputs
of a “black box,” but as transparent, auditable evidence that can be used with confidence in both legal and
institutional contexts. This quality is crucial in bridging the gap between technological innovation and
regulatory acceptance.

From a societal standpoint, the integration of multiple validated data sources fosters public confidence
in the credibility of monitoring systems. Trust in these systems is not a peripheral concern but a determining
factor in whether communities and industries accept and comply with environmental regulations. Without
social legitimacy, even the most accurate technologies risk being underutilized or contested.

The findings highlight that Al and ML are not only instruments of environmental science but also
vehicles for strengthening governance. They reinforce accountability, facilitate compliance, and help align
institutional frameworks with public expectations. In this sense, the technology becomes both a scientific
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tool and a social contract mechanism, enabling more sustainable, transparent, and widely accepted
environmental management.

5. Discussion

The article demonstrates the potential of Al and machine learning (ML) models to improve
environmental monitoring for air, water and soil quality. Thanks to a combination of state-of-the-art IoT
sensors, cloud-based Al, and statistical validation methods, we were able to achieve highly accurate real-time
pollution detection and predictive analysis. The results indicate that the Gradient Boosting Machines (GBM)
were a powerful concurrence for all other ML models used in this experiment with higher accuracy for
predicting the pollutants' levels. These findings are consistent with earlier studies that highlighted the
promise of Al in environmental change monitoring but also indicate where improvements still are necessary.

Beyond technical accuracy, these outcomes highlight the importance of ensuring that model outputs are
perceived as trustworthy by regulators, industries, and communities ! ¥/, Without public acceptance and
institutional legitimacy, even the most accurate predictive models may fail to translate into real-world

compliance or behavioral change [,

Importantly, this study represents the potentially the most comprehensive multi-modal integration of
environmental parameters in existing literature. Existing works related to individual air-pollutant such as

(241 Tn contrast,

predicting air quality with deep learning!®’ or predicting water quality with neural networks
this study is the first of its kind to create an air, water and soil data, merged into a single model, from which
the resultant can be an all-rounder examination of the trends of pollution in the environment. This
integration is key to modeling cross-domain dependencies, for instance the influence of air pollutants on soil

content or the relationship between industry emissions and turbidity level in nearby water.

From a governance perspective, such integration has additional implications: multi-domain monitoring
creates a more transparent evidence base, which can be used to strengthen environmental legislation and

improve accountability mechanisms %31,

Compared to Lowe et al.'s work 2%, which surveyed recent Al applications in water treatment and
monitoring, this study further builds upon the discussion by proposing a predictive modeling framework that
leverages heterogeneous environmental data sources. Most past studies on Al have centered around reactive
strategies, for example, Al-aided identification of contaminants in water bodies; our suggested approach
involves proactive forecasting which empowers early remediation before pollutants reach dangerous limits.
Monitoring is moving from reactive to predictive monitoring, which is a major breakthrough in our
environmental management strategies.

Predictive monitoring also reshapes social expectations: when pollution is forecast in advance,
policymakers and communities can engage in proactive mitigation, reinforcing a shared responsibility for

sustainability !4 19,

Moreover, this study extends the findings of Wan et al. studied Deep Learning models for predicting
water turbidity 4. Although their findings confirmed that RNNs are consistent in processing time-series
variation, this study indicates that GBM models outperform RNNs, in terms of overall efficacy, despite their
computational overhead. Furthermore, boosted decision trees perform better than standard neural networks
and can be more efficiently deployed in smart real-time environmental monitoring systems. The
interpretability of boosted decision trees is also crucial, since interpretable models enhance transparency and

improve public confidence in Al-driven decision-making %33,
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The use of Al for forecasts of air quality has been well analyzed in literature, especially in works such
as published by Subramaniam et al.?”! that reviewed Al-driven forecasting models in the atmospheric
system, more specifically, for air pollution. Their results show that the meteorological-based models were
limited and that using machine learning can result in the improved accuracy. This study validates those
findings: Al-driven models also yielded a 12% drop in PM2. 5 for early warnings and adaptive mitigation
strategies. The transformer-based models and LSTM architectures evaluated in this work further highlighted
the great efficiency of deep learning when it comes to modeling short-term pollution dynamics, even if their
demanding computational requirements prevent real-time implementation. However, successful
implementation requires more than model efficiency: policy uptake and social trust determine whether early
warnings are acted upon effectively "> 371, These findings also correspond with new applications of Al in
large-scale forestry management and aquatic biodiversity modeling, where deep learning architectures have
been shown to capture complex ecological interactions with unprecedented accuracy -3,

1381 examined the

From a soil monitoring view, this study complements a recent review by Chen & Wang
potential of heterogeneous sensor networks for soil characterization at large scales. In their research, it was
shown that active learning methods increase the efficiency of data gathering, which is in line with what is
observed in this study, where the results of a spatiotemporal Kriging interpolation showed that two samples
significantly improved predictions of soil contamination. But there is one major limitation: current Al
models are not good at predicting trends over longer time scales for soil quality because contamination
spreads slowly. While many of the soil degradation processes are slow, causes of air and water pollution
show extreme variability over short time scales, making long-term historical datasets necessary to improve
model reliability. This limitation also reveals a governance challenge: regulators must balance the short-term
variability of pollution with the long-term progression of soil degradation—highlighting the need for policies

that integrate both immediate forecasting and long-term resilience planning [ 23],

The study also provides bearing challenges and constraints that need to be solved in further studies
despite promising outcomes. One area that is a limitation is data variability between geographic regions and
its effect on generalizability of Al models. Although predictions achieved high accuracy within the places of
study, calibrating the models to variable climatic or industrial situations would likely need to be performed
in another place. Fan et al. ' raised similar concerns in study of how Al models can adapt to applications in
environmental sustainability. The study stated that AI models trained on a certain dataset tend to fail when
encountering unseen environments, hence a push to develop adaptive algorithms. In this respect,
generalizability is not only a technical problem but also a social one: stakeholders are less likely to trust
monitoring systems if they appear to fail outside controlled conditions 2!, Recent research similarly notes
that environmental Al adoption depends on public confidence in the fairness, transparency, and accuracy of

(431 Trust-building

algorithmic tools, particularly among youth and environmentally active communities
mechanisms, including explainable Al interfaces and transparent IoT data-sharing frameworks, are
increasingly recognized as central to enhancing compliance behavior and encouraging pro-environmental
decision-making. Building adaptive models that can demonstrate robustness across contexts is therefore

essential for maintaining legitimacy !,

Another restriction concerns sensor reliability and missing data issues especially in monitoring of water
and soil quality. Although the Kalman filter and reconstruction techniques based on autoencoders were
employed to address the problem of missing data, sensor failures and communication problems remain to be
solved. As Reis et al. ['8 Al-driven applications for data science have inherent challenges when it comes to
hardware degradation and signal interference in sensor networks, resulting in systematic biases. Addressing
this will need self-correcting Al models that are capable of auto-regulation to overcome sensor failures, and
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missing data in real-time. Reliability also has a psychological dimension: when communities perceive
frequent breakdowns or inconsistencies in monitoring data, their confidence in enforcement and compliance

declines [0

. Future Al systems must therefore address both technical resilience and perceived
trustworthiness . Other studies warn that Al adoption for natural resource and environmental safety
management requires explicit legal frameworks to avoid compliance disputes, ensure admissibility of

algorithmic evidence in judicial settings, and maintain procedural fairness in environmental litigation 134,

Findings are also in line with the work of Korra & Sadhana '), in which Internet of Things sensors,
cloud Al and satellite broadband are integrated for monitoring environmental elements in real time. Although
their study highlighted the relevant applications of the smart city infrastructures in the realm of pollution
management, this study builds on their framework by proving the efficacy of the predictive Al models not
only in urban contexts but also exploring their applicability in rural and industrial contexts. However, there
is still a lag in data transmission, particularly in areas with little to no connectivity. Further work needs to
focus on optimizing the edge architecture to reduce the latency in Al-based environmental monitoring. This
is consistent with 2025 evidence showing that federated and distributed learning architectures can help
mitigate digital inequities by allowing local monitoring systems to function even under limited connectivity,
thus maintaining environmental safety across heterogeneous regions ., Connectivity gaps also raise equity
issues: if only well-connected regions benefit from Al-based oversight, disparities in environmental
protection may widen, reducing societal trust in governance mechanisms 21,

Additionally, the outcomes underscore the importance of policy formulation and regulatory adjustment
to ensure that Al-enabled environmental tracking translates into meaningful benefits. Literature such as
Adefemi et al.'" argues that for effective protection of the environment, Al-centric pollution tracking
systems should be integrated into government policy frameworks. This study illustrates that even if Al
models generate more precise forecasts, the effectiveness of these systems is ultimately determined by their
uptake by policy makers, industries and municipal authorities. Thus, the social legitimacy of Al is as
important as its technical capacity: adoption depends on whether stakeholders trust the system and perceive it

as aligned with their rights, duties, and collective environmental goals 733,

Although this study focused on predictive modeling and data-driven insights, the integration of Al with
autonomous intervention systems can be explored in future research. Recent developments in Al-enabled
robotic remediation and automated pollution control systems indicate that Al has the potential not just to
monitor but to actively reduce environmental pollution B!, The next step toward creating self-sustaining
frameworks for environmental protection will be to investigate how machine learning can be integrated with
autonomous remediation systems. Future research should also examine the psychological and institutional
readiness for such interventions, since their success will rely not only on technical performance but also on

acceptance by regulators, industries, and affected communities %37,

Evidence from literature supports this conclusion, emphasizing that integrated AI-IoT-remote sensing
architectures are becoming foundational elements of global sustainability strategies, climate-change
mitigation initiatives, and environmental protection systems. These developments highlight the growing
importance of data-driven, legally aligned, and socially trusted Al infrastructures for environmental
governance.

The article illustrates how transformative Al and machine learning can be to environmental monitoring,
delivering accurate predictions of pollution levels, near-real-time anomaly detection, and the ability to
integrate cross-domain datasets. As indeed this comparison with other literature shows that research in the
field of Al-based environmental insight has experienced a noticeable professionalization; however,
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generalizability of data, reliability of sensors, and adaptability of policy all remain major challenges. By
focusing on scalable Al frameworks, adaptive learning techniques, and autonomous intervention systems,
future studies will offer transformative potential that converts Al-driven environmental monitoring into
actionable and sustainable solutions. The broader impact of this work lies not only in advancing
environmental science but also in showing how Al can strengthen compliance regimes, foster societal trust,
and contribute to sustainable governance [ % ¢, This dual contribution: scientific precision and social
legitimacy—marks the key to making Al-driven monitoring a cornerstone of environmental psychology and

policy U8:31],

The strong alignment between predicted and observed pollutant patterns demonstrates that high-
accuracy Al systems can directly support evidence-based regulatory interventions. When deployed within
environmental agencies, such predictive stability enables earlier issuance of compliance warnings, more
targeted inspections, and scientifically defensible policy decisions. This outcome echoes broader findings
that Al-supported governance frameworks enhance institutional transparency and increase the public’s
willingness to trust environmental information generated by automated systems (recent governance-oriented
environmental studies support similar conclusions [ 12431,

6. Conclusions

Environmental monitoring has also been aided with the use of Al and machine learning techniques that
have proven to significantly invest in improving the accuracy, efficiency and prediction of pollution in the
air, water and soil. A key take-away from the study was the successful generation of an Al-powered multi-
modal environmental detection framework by utilizing the real-time data from IoT sensors and state-of-the-
art machine learning methods to predict pollution trends and discover anomalies. Enabling such predictive
models would facilitate these proactive instead of reactive solutions. The research is enlightening because it
shows the role of Artificial Intelligence (Al)-based approaches like gradient boosting machines, long short-
term memory networks, and transformer-based architectures towards improved forecasting accuracy and
pollution detection that enable timely and data-driven environmental management decisions.

The findings provide compelling evidence that Al-enable environmental monitoring enhances pollution
assessment across diverse geophysical contexts, closely capturing geographical variation in pollution and
pollution dynamics. Notably, the advanced feature engineering techniques and statistical validation
methodology adopted contributes to the robustness of the Al models, making it capable of identifying
breakthrough environmental hazards at unprecedented levels of sensitivity. Based on these results, it is
further highlighted in the study that cross-domain correlations could be introduced into a combined AI model
by integrating multi-dimensional environmental parameters into the same network, which could facilitate a
profound comprehension of that pollution sources, interactions and long-term trends. And integrating air,
water and soil data into a unified predictive framework is a significant advance in terms of environmental
analytics, providing informed insights not available through conventional monitoring techniques.

In spite of the numerous advantages of Al-based monitoring, there still some challenges and limitations
that should be addressed in order to improve Al monitoring system in long term. One of the crucial things is
variability in data due to different environmental circumstances, which might restrict the generalization of
Al models in other regions. Sensor networks are commonly pioneers in real-time data collection and
therefore the integrity of Al-based predictions could be compromised due to hardware failure, data voids,
and transmission delays. Besides, computationally expensive deep-learning based models may also pose
scalability issues in resource-poor settings with poor digitally enabled infrastructure or cloud computing
capabilities. These challenges highlight the importance of the need for flexible learning strategies, refined
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sensor calibration methods and robust computing platforms to facilitate continuous and accurate monitoring
of the environment.

This study further enhances this concept by making the models transferable using the transfer learning
and reinforcement learning approaches, which now that is an area of research for Al models to learn from
cross environmental conditions. Moreover, Al technologies with built-in autonomy concerning intervention
could also provide the protection of ecosystems, enabling a form of automation of pollution control, instant
remediation, and optimal regulatory enforcement. Research investigating the role of AI for climate
adaptation strategies and disaster response would enable a better understanding of the contribution of Al-
powered environmental monitoring tools towards broader goals of sustainable global development.

The study highlights the potential of Al and machine learning to change the landscape of environmental
science and transform how pollution is assessed and managed. As artificial intelligence technologies evolve,
their adoption within the context of environmental policy, smart city infrastructure, and industrial regulation
will be critical to realize their full promise. Al-powered environmental monitoring has the potential to
enhance sustainability and environmental management by building on existing challenges and monitoring
innovations, and contributing to greater data-driven decisions and ultimately a healthier global ecosystem
space.

The study underscores that technical innovation alone is not sufficient: for Al to deliver lasting value, it
must be embedded in governance systems that emphasize compliance, accountability, and fairness. The
social acceptance of these technologies—rooted in transparency, trust, and perceived legitimacy will
determine whether they become widely adopted or resisted. By aligning predictive power with psychological
and societal dimensions, Al-driven monitoring can evolve from being a scientific tool to serving as a
foundation for collective environmental stewardship. This dual capacity, advancing precision while
reinforcing trust, marks its most transformative potential within environmental psychology and policy.
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