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ABSTRACT 
As environmental pollution becomes more complex over the years, finding effective monitoring methods becomes 

crucial. In real-time monitoring, artificial intelligence (AI) and machine learning (ML) models can be integrated to 
obtain information about air, water, and soil quality assessment. To improve the accuracy of pollution detection and 
forecasting, this study proposes a comprehensive framework that integrates IoT-enabled sensor networks, predictive AI 
models, and statistical validation techniques. The article assesses the relative performance of Gradient Boosting 
Machines (GBM), Long Short-Term Memory (LSTM) networks, and Transformer-based split networks to predict 
environmental changes. 

The study was conducted across multi-domain urban, suburban, and rural monitoring zones using multimodal 
datasets derived from IoT sensors, remote sensing streams, and laboratory-validated environmental indicators. Similar 
integrated AI–IoT ecological monitoring strategies have been highlighted in recent literature as essential for sustainable 
environmental protection and high-fidelity pollution forecasting. The dataset comprised 216 air samples, 144 water 
samples, and 96 soil assays collected from three monitoring regions. 

 Results show that PM2.5 concentrations decreased by 12% (p < 0.01), water turbidity declined by 15% (p < 0.01), 
and lead levels in soil were reduced by up to 16.1% in agricultural sites. The GBM model achieved the highest 
predictive performance with Root Mean Square Error (RMSE) = 2.1 µg/m³, Coefficient of Determination (R²) = 0.94, 
and F1-Score = 92.0%, outperforming LSTM and Transformer models. 

Beyond technical performance, this study also highlights the legal and societal dimensions of AI-driven 
monitoring. By improving accuracy and transparency, these systems strengthen regulatory compliance frameworks 
while fostering public trust in environmental governance. Understanding how citizens and policymakers perceive the 
reliability of AI-based platforms is essential to ensuring policy acceptance and compliance behavior. This dual 
perspective—technological and psychological—illustrates that sustainable outcomes depend not only on advanced 
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algorithms but also on social legitimacy and institutional accountability. 
Keywords: AI-driven monitoring; machine learning; environmental pollution; IoT sensors; predictive modeling; 
sustainability; legal compliance; public trust 

1. Introduction 
Environmental monitoring has been one of the essential pillars for the responsible management of 

resources while helping to protect ecosystems, conserve biodiversity, and meet regulatory requirements. 
However, beyond ecological assessment, environmental monitoring is increasingly tied to regulatory 
compliance and societal trust, as legal systems require evidence-based enforcement and citizens demand 
transparency in environmental governance [1, 2]. 

A recent wave of bibliometric and systematic reviews confirms that environmental AI research is 
rapidly expanding, with significant growth in applications for pollution prediction, compliance automation, 
ecosystem monitoring, and biodiversity protection [3-5]. The trend highlights a global transition from 
fragmented environmental datasets toward unified, data-driven oversight ecosystems enabled through AI and 
machine learning. 

As technology advances exponentially, the convergence of artificial intelligence (AI) and machine 
learning (ML) with environmental monitoring systems offers a paradigm shift that could drive unprecedented 
levels of efficiency and effectiveness across our environmental assessment frameworks. Recent research 
confirms that AI enhances not only technical accuracy but also accountability, strengthening legal 
compliance frameworks and public trust in policy decisions [1, 6, 7]. The last studies further reinforce this shift, 
emphasizing that AI-enabled environmental analytics are now central to protected area management [8], real-
time ocean waste tracking [9], and predictive environmental change modeling [10]. Additionally, AI is 
increasingly embedded within environmental governance and judicial processes, enabling more transparent, 
explainable mechanisms for regulatory enforcement [11, 12]. According to recent WHO assessments, air 
pollution continues to cause more than seven million premature deaths annually, while UNEP reports that 
over 40% of global population lives in regions where particulate matter consistently exceeds recommended 
safety thresholds. Additionally, coastal and freshwater systems remain under significant stress, with nearly 
60% of monitored water bodies worldwide showing at least one form of chemical or biological 
contamination. These updated global indicators emphasize the urgent need for scalable, AI-assisted 
monitoring frameworks capable of supporting real-time environmental governance and early warning 
systems [8-10].  

Traditional approaches to data collection, analysis, and reporting are often labor-intensive and narrowly 
focused, and falter under the scale and complexity of modern environmental data. With increasing pollution 
concerns, evolving climate patterns, and rising complexity of regulatory obligations, oversight now requires 
not only technical monitoring but also frameworks that address compliance behavior and the psychology of 
risk perception among industries and the public [13, 14]. 

AI and ML technologies bring significant benefits, such as improved accuracy and the ability to derive 
actionable insights from large and heterogeneous datasets. In this respect, AI supports more reliable 
reporting that regulators can integrate into legal procedures, while its transparency fosters greater societal 
acceptance of enforcement measures [1, 15, 16]. 

Such architecture enables organizations to distill and help decision-making in time and act accordingly, 
enabling monitoring of the environment from a reactive process to an accelerative and preventative one [17]. 
However, decision-making is not only technical; policymakers must weigh legal standards and public 
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perception, where trust in AI-generated evidence plays a decisive role in determining compliance and the 
acceptance of environmental regulations [18, 19]. 

Environmental monitoring mainly measures air, water, soil and other natural resources, but air quality 
monitoring and real measurement of air pollution are becoming increasingly essential. Monitoring programs 
can also identify emerging threats, evaluate the effects of human activities, and ensure that industries are 
adhering to environmental safety standards—by establishing baseline conditions and recording changes over 
time. However, effective monitoring today requires not only ecological assessment but also legal 
mechanisms and public trust to ensure compliance and enforcement [1, 2]. But the traditional perspectives 
don’t usually manage to keep pace with the steeply evolving environmental realties. Remote sensing, field 
instruments, and laboratory analyses yield data in such overwhelming volumes that they threaten to outrun 
traditional data management metadata frameworks for timely, comprehensive processing. Moreover, there 
are febrile data in the form of satellite images, ground-based sensor data, social media feeds, and citizen 
science contributions with an intricacy of integration and interpretation of the data [20]. 

Artificial intelligence and machine learning (AI and ML) technologies, skilled in analyzing large 
datasets and identifying trends, represent a possible escape hatch for this bind. AI systems are able to 
quickly analyze streams of sensor data, recognize when changes deviate from normal conditions and even 
predict future environmental trends based on historical data. In particular, machine learning models may be 
trained to detect early warning signals around pollution, ecosystem degradation, or natural resource depletion. 
The result is a high-cadence at-scale application of intelligent automation which is no longer only higher 
fidelity in the assessment of the environment and threats but also enables real time reaction to these real time 
emerging threats. Moreover, AI and ML as technologies possess built-in predictive powers to enable 
regulators, policymakers, and organizations to understand compliance risks in advance and take remedial 
measures to mitigate breaches before they happen. These proactive measures will minimize environmental 
impact and be more cost-effective in terms of remediation and enforcement, while still achieving 
environmental goals[6, 13].Importantly, this dimension connects directly to policy acceptance and public 
behavior, since environmental rules are only effective if stakeholders perceive them as fair, transparent, and 
trustworthy [16, 18, 19]. 

AI and ML is also allowing for a more widespread approach to the issue of environmental monitoring, 
beyond simply improving efficiency and accuracy. These technologies help to create a holistic view of 
environmental conditions by aggregating data from a wide variety of sources from remote Internet of Things 
(IoT) sensors to publicly available climate models. This bird’s eye high-level perspective allows stake-
holders to appreciate the complex subtleties of the weaving relationships and the relationships that will 
correlate with ones that they would have previously missed. Machine learning algorithms, for instance, can 
link industrial emissions to climate variability in regions to health outcomes, information that helps inform 
policy and target interventions. The applied mathematics we develop in AI and ML can give innovative 
insights into understanding the complex systems that dictate how we experience the world can lead to 
optimized sustainable management of our resources [14, 21, 22]. 

The automation of regular tasks, making workflows more efficient, is another major benefit AI and ML 
can drive. Gathering and processing data using multiple data collection, analysis, and reporting procedures 
can be tedious and expensive. Human resources towards strategy formation, drafting policy and stakeholders 
can now be channelized into high-value jobs through the automated processes. It minimizes human error, 
which includes making data analyses more precise and reliable. As a result, this reliability adds to the 
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credibility of monitoring findings and contributes to increased trust between regulators, industry players and 
the public [1, 7, 16]. 

The integration of AI and ML into environmental monitoring systems revolutionizes our capabilities in 
interpretation, conservation, and protection of natural resources. This technology promises to address long-
standing frustrations with data complexity, processing speed and predictive accuracy, such that organizations 
can meet regulation compliance while gaining better environmental results. This novel approach utilizes the 
distinctive capabilities of AI and ML toward the establishment of a new paradigm of proactive, science-
based environmental monitoring — one that reaches beyond the traditional approaches used to characterize 
environmental conditions. 

1.1. The aim of the article 
This article aims to explore how artificial intelligence (AI) and machine learning (ML) are transforming 

environmental monitoring and compliance from just examining your data to a holistic view. Environmental 
problems are becoming ever more complex and traditional forms of monitoring can't cope with the massive 
amounts of data that are needed to present timely and actionable information. Here, we will explain how AI 
and ML can help us to cover the mentioned gaps, offering more precise, time-efficient, and advance solution 
of the environmental data. 

The article aims to determine how AI and ML can benefit anomaly detection, which can speed up the 
task of localizing pollution sources, following environmental change and enabling forecasting over risk 
before it expands. Additionally, it will explore how these technologies help to combine disparate data sets 
from multiple sources, including satellite imagery, multiplex IoT sensors and high-throughput lab analyses 
into integrated, real-time monitoring frameworks. In this way, the center makes great strides to showcase 
benefits of AI-powered data fusion that provides a better insight on the environmental situation and 
developments. 

Besides that, it focuses on exploring how artificial intelligence and machine learning can simplify 
compliance processes. It also highlights how automation of data analytics and report generation helps reduce 
human error, lowers operational costs, and enhances regulatory compliance. Moreover, it stresses the 
psychological and legal aspects of trust in AI-backed supervision, showing how industries and firms remain 
in accordance with sustainability targets while hedging against penalties and reputational damage. 

The article aims to elucidate the revolutionary implications that AI and ML could have for 
environmental monitoring based on evidence rather than misleading hype. As such, it also presents practical 
use cases, approaches and advantages in three selected areas with the aim of directing political decision-
makers, industry decision-makers and researchers towards the application of these forward-looking 
technologies. This should lead to more efficient usage of the resources, improved compliance with 
regulations, and ensure the ecosystem are preserved for our future generations. 

1.2. Problem Statement 
The size and complexity of the ever-evolving environmental challenges are proving to be severely 

challenging for traditional monitoring solutions, making resource management and compliance to 
regulations, very painful and unmanageable. Traditional approaches that rely on manual data collection, 
geographically-fixed monitoring stations for sensing, and disconnected analytic techniques are often unable 
to consistently produce the right type of timely, high-fidelity insights. As a result, industries, governments 
and environmental agencies cannot quickly track pollution sources, predict ecosystem disruptions or forecast 
future environmental trends. The gap between the generation of environmental data and the robust real-time 
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analysis needed to inform decision-making about the environment threatens the efficacy of that decision-
making. 

Then consider that the type of data sources — satellite imagery, IoT sensor networks, climate models, 
field observations, simply adds to the challenge. The most valuable information has a synchronicity problem 
and isn't aggregated enough to be integrated and analyzed in time. Such fragmentation can lead to 
inefficiencies, for example, unnecessary duplication of monitoring and delayed responses to new threats, 
and can dilute overall effectiveness of oversight for the environment. 

Another key worry is the increasing regulatory fatigue. Decreasing environmental standards set by 
governments and international bodies mean that more systems are being developed, thus putting pressure on 
industry to keep up with the ever-changing rules and regulations. However, the approaches adopted here do 
not adapt quickly enough to changes. As a result, businesses may be vulnerable to compliance violations that 
can lead to financial penalties, damage to reputation, and adverse impacts on the environment. Importantly, 
this creates a dual challenge: technical efficiency of monitoring and psychological acceptance of compliance 
obligations, since regulation is effective only when stakeholders perceive monitoring technologies as 
legitimate and trustworthy. 

Traditional monitoring methods are resource heavy and prone to human error, making it difficult to 
maintain a consistent accuracy. It should be stressed that there are numerous situations with high stakes, 
where informed decisions need to be made based on information as swiftly as possible and in as correctly as 
possible, making this a challenging situation. These limitations of current methodologies display a need for 
alternative solutions, specifically that they must be more innovative, effective, and scalable in principle to 
address these multidimensional issues and increase the efficacy of environmental monitoring and compliance 
programs. 

2. Literature review 
The use of artificial intelligence (AI) and machine learning (ML) in environmental monitoring and 

compliance services has recently gained much traction. Such technologies have gained recognition as 
solutions to these challenges associated with traditional monitoring approaches that are most often rooted in 
labor-intensive collection methods and fragmented datasets. Artificial intelligence and machine learning are 
beginning to disproportionately elevate the processes used to gather, analyze, and utilize environmental data 
[13, 15] 

The current literature includes some attractive research activities making use of AI to either automate or 
improve anomaly detection. It's must to detect pollution sources, variations in water quality, and alterations 
in the air and imaging data in reality, Machine learning models have proved their capability to recognize 
trends and anomalies in massive and intricate datasets. With this capability, organizations can rapidly and 
efficiently respond to environmental hazards unlike ever before. Consequently, leveraging machine learning 
techniques within monitoring systems is acting as a significant breakthrough by allowing preemptive action 
to be taken and have in turn minimizing the occurrence of longer-term environmental impacts [23-25]. 

Cross-source data integration Another major theme in the literature. Large-scale changes (destruction, 
population displacement, resource depletion) also put pressure on data in the environmental field, which is 
now inundated with streams of vastly different data varying in scale, resolution, and frequency, thanks to the 
proliferation of IoT sensors, drones, and satellite imagery. Data-driven initiatives have been attempted by 
various organizations to merge these disparate datasets into actionable insights using AI and ML techniques. 
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Using sophisticated algorithms, practitioners are able to derive more value out of a vast amount of raw data, 
leading to more accurate and quicker decision-making in environmental assessments[20, 26, 27]. 

Similarly, predictive modeling of environmental trends is developing rapidly. Studies highlight the 
capacity of AI to model complex historical patterns and forecast events like pollution spikes or water quality 
declines, enabling proactive resource allocation and preventing compliance violations [22, 28, 29]. 

At the same time, there is growing attention to how AI-driven monitoring must operate within legal 
frameworks and public policy ecosystems. Recent analyses underscore the importance of reviewing 
technological innovations through the lens of sustainability law to ensure their enforceability[2, 30, 31]. 
Alongside this, scholars stress the significance of trust and transparency in AI systems, indicating that citizen 
confidence is essential for the acceptance of environmental policies and oversight mechanisms[17, 32, 33]. 

Recent work has stressed that explainable and legally aligned AI systems are necessary for 
strengthening institutional legitimacy, especially in contexts involving environmental risk assessment, 
protected area governance, and industrial emission oversight [8, 12, 34, 35]. However, despite rapid technological 
expansion, the literature still identifies key gaps, including insufficient cross-domain fusion (air–water–soil), 
limited real-time anomaly detection frameworks, and inadequate integration of federated or privacy-
preserving architectures for industrial monitoring [36]. Addressing these gaps is essential for advancing next-
generation environmental compliance systems. 

Building on this, it is increasingly evident that AI and ML serve not only as technological tools but also 
as facilitators of environmental behavior change and social legitimacy. By reinforcing monitoring accuracy 
and automating compliance reporting, AI strengthens institutional frameworks and helps alleviate regulatory 
fatigue. However, its societal impact ultimately hinges on how deeply communities, regulators, and 
industries perceive its fairness, accountability, and psychological acceptability [7, 37, 38]. 

3. Materials and methods  
3.1. Data collection 

Data collection by means of multimodal monitoring framework belonging to various IoT-based sensors, 
automated sampling stations, and in-house laboratory-based validation techniques. In order to 
comprehensively capture environmental variations, the strategy for deployment was designed to cover 
diverse geographical landscapes including urban, suburban, and rural areas. In particular, sensor placement 
methodology accounted for: historical pollution trends; meteorological data; and regulatory standards in 
determining optimal locations, while minimizing redundancy. In addition, the spatial design was aligned 
with regulatory compliance zones to ensure results could inform enforceable environmental standards, 
linking technical deployment to policy relevance [2, 30]. 

3.1.1. Air quality monitoring 

To monitor the air quality, 50 IoT-enabled air quality sensors were placed in various urban centers with 
metropolitan traffic, industrial zones, and rural areas to measure PM2 5, PM10, NO₂, and SO₂ levels [37]. A 
spatiotemporal analysis of pollution patterns and modeling of wind trajectories informed sensor deployment. 
Through hourly data recording, air quality fluctuations were detected in real time which was wirelessly 
transmitted using LoRaWAN and 5G networks to a cloud-based AI system for real-time analysis and 
forecasting [6]. Using Voronoi tessellation, a technique used to reduce spatial redundancy of data obtained 
from sensors through optimal placement in a study area, was utilized to ensure homogeneity and non-
overlapping of regions monitored by tracking changes across study area [20].  
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Beyond monitoring efficiency, this real-time architecture can also be used by regulators for 
accountability reporting and by communities to increase transparency and trust in policy enforcement 
[16].This aligns with recent findings showing that next-generation remote-sensing and geospatial workflows 
now operate at big-data scale, requiring AI-assisted pipelines for efficient extraction of environmental 
indicators and early detection of pollution dynamics [39]. 

3.1.2. Water quality monitoring 

Water quality was monitored at 10 automated sampling stations established in major water bodies and 
reservoirs through pH, turbidity, and dissolved oxygen (DO) measurements every 4 h. To identify the 
optimal sampling locations for high-resolution data collection (avoiding the clustering bias and ensuring that 
areas were sampled that was prone to contamination from industrial runoff and agricultural activity [2, 7], a 
Gaussian Mixture Model (GMM) was applied. Watershed turbidity anomalies detected and estimated from in 
situ sensor data were used to enhance spatial resolution through the integration of satellite-based remote 
sensing from Sentinel-2 imagery, which can indicate probable contamination sources [26]. A signal filtering 
algorithm was applied to the collected data to remove noise induced by environmental processes; for instance, 
sediment resuspension induced by rainfall events [30, 40]. 

The integration of remote sensing with IoT sensors not only improves scientific accuracy but also 
provides independent validation sources, which strengthens credibility in legal proceedings and enhances 
citizen confidence in environmental reporting [14, 40] 

3.1.3. Soil quality monitoring 

Through the application of a spatiotemporal Kriging Interpolation method, soil quality was monitored at 
20 strategically selected sites for enhancing spatial estimation of soil pollution between physical sampling 
locations. Heavy metals (Pb, Cd) and essential nutrients (N, K) were determined using a combination of in-
situ X-ray fluorescence (XRF) spectrometry with laboratory-based Inductively Coupled Plasma Mass 
Spectrometry (ICP-MS). Soil contamination and nutrient loss were assessed via monthly data collection, 
facilitating consideration of seasonal variances in soil quality. Time-series decomposition methods were 
implemented to make sure that long-term trends in the data were accurately identified [38]. 

Because soil contamination often carries legal and regulatory consequences for land use, the 
methodology was explicitly designed to align with compliance standards, ensuring that AI-driven results can 
be applied directly in remediation policies [13, 31]. 

3.2. Data preprocessing 
To ensure data quality, consistency, and reliability, an extensive preprocessing pipeline was 

implemented, addressing missing values, outliers, and scaling differences across the datasets. 

3.2.1. Missing data imputation 

Data gaps in air, water, and soil quality records were addressed using a hybrid imputation technique: 

 Linear interpolation was applied to short-term gaps (<6 hours) in continuous data streams, such as 
air and water quality sensor readings, preserving local trends [20]. 

 Kalman filtering was employed to correct sensor drift and mitigate cumulative measurement errors 
over extended periods, particularly in soil quality data [38]. 

 Autoencoder-based reconstruction was used for missing sequences exceeding 6 hours, leveraging 
deep learning to restore missing patterns while minimizing imputation bias[20]. 
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3.2.2. Outlier detection and removal 

Outliers were detected and handled using a two-stage filtering process to ensure that anomalies were 
correctly classified as either sensor errors or genuine pollution spikes: 

1. The 3-standard deviation method was used to identify global outliers that deviated significantly 
from the historical mean. 

2. The Isolation Forest Algorithm was applied to detect localized anomalies, distinguishing between 
genuine pollution events, such as industrial emissions, sudden algal blooms, and sensor 
malfunctions [23, 32]. 

3.2.3. Data normalization 

Since environmental variables had differing scales, Min-Max normalization was implemented to 
standardize feature ranges: 

𝑥𝑥′ = 𝑥𝑥−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

                                                                   (1) 

This transformation improved model training stability and enhanced comparability across datasets, 
particularly when integrating air, water, and soil parameters into a unified analysis [21]. 

This preprocessing pipeline also enhances explainability and reproducibility of the models, which are 
essential for building institutional trust and making AI-based evidence admissible in policy or legal contexts 
[18, 32]. 

3.2.4. Feature engineering 

Feature engineering, which is a set of processes such extraction and transformation, was utilized in this 
methodology to increase the predictive power of our machine learning models. Rolling averages with 3-, 6- 
and 12-hour window were used to capture temporal trends in air pollution levels [33]. Fast Fourier Transform 
(FFT) was performed on water turbidity data, which helps to identify frequency-domain patterns 
corresponding to seasonal patterns of contamination trends [24]. The Wavelet Transform decomposition and 
Savitzky-Golay filtering were applied to minimize fluctuations in long term contamination patterns in soil 
quality measurements including soil organic carbon (QSOC) and carbon flux (QC) and to filter determined 
long-term contamination patterns [38]. 

Importantly, engineered features such as exceedance frequencies and threshold breaches were designed 
not only for technical robustness but also for direct translation into compliance indicators for regulatory 
frameworks [28, 29]. 

3.3. Model development 
3.3.1. Machine learning framework 

Several machine learning models were trained and optimized for environmental predictions: 

 Random Forest (RF): Used as a baseline model due to its robustness in handling mixed-type 
environmental datasets. 

 Gradient Boosting Machines (GBM): Selected for structured regression tasks, as it balances 
accuracy and computational efficiency [25]. 

 Long Short-Term Memory (LSTM) Networks: Applied to time-series predictions, particularly for 
forecasting air pollution trends [22]. 



Environment and Social Psychology | doi: 10.59429/esp.v10i11.4109 

9 

 Transformer-Based Models: Integrated air, water, and soil data into a cross-modal framework, 
capturing complex interdependencies [21]. 

Model optimization prioritized interpretability in addition to predictive power, ensuring that regulators 
and policymakers can understand and trust model outputs when they are used for compliance or enforcement 
[1, 33]. 

3.3.2. Hyperparameter optimization 

Optimizing hyperparameters is one of the important factors that improve predictive performance and 
generalization of a model. Here, a probabilistic model-based method was used by employing Bayesian 
Optimization for systematic fine-tuning of hyperparameters of Gradient Boosting Machine (GBM), Long 
Short-Term Memory (LSTM) networks, and Transformer-based models. Grid and random search techniques 
were considered but Bayesian Optimization was employed instead, as it features an adaptive exploration-
exploitation implementation that quickly homed in on the optimal hyperparameter configuration while 
minimizing the amount of computation needed. 

1. GBM Hyperparameter tuning 

The GBM-based model was tuned with respect to learning rate, number of estimators, and maximum 
tree depth—important parameters to strike a balance between the complexity of the model and 
generalization performance. 

 Learning Rate (0.01–0.1): Determines the size of the steps taken toward minimizing the loss 
function at each iteration. Smaller values lead to better stability of the model but too small value 
can make the training time to be very large. While the best value was 0.05 (for fastest convergence 
without losing predictive accuracy). 

 Number of Estimators (100–500): Specifies the number of boosting rounds. A high applies greater 
representational power for the model but at increased computational costs. The most performing 
ones had 350 estimators, a good trade-off between overfitting and generalization. 

 Max Depth (3–10): Controls single tree complexity. Increased depth helps capture non-linear 
interactions, but risks overfitting. The best depth for air pollution data was 6, and it was 5 for water 
and soil datasets to produce good predictions. 

The Bayesian Optimization process identified (learning rate: 0.05, estimators: 350, max depth: 6) as the 
optimal configuration, improving the model’s F1-score and reducing mean squared error (MSE) by 8% 
compared to default hyperparameters. 

2. LSTM Hyperparameter tuning 

To enhance temporal dependency modeling for time-series predictions in air quality and water quality 
trends, we optimized Long Short-Term Memory (LSTM) networks. 

• Hidden Units (50–200): Specifies the number of neurons in the LSTM layers. While a high 
number will produce better feature extraction, it will take longer to compute. 128 hidden units 
was identified as the best configuration to balance model complexity and the time it took to 
train. 

• Dropout Rate (0.1–0.4): Used to reduce overfitting by randomly discarding neurons during 
training. We found that a dropout rate of 0.2 resulted in the best generalization performance at 
limiting overfitting while preserving stable predictions. 
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• Sequence Length (24–72 hours): The total amount of historic data consumed per prediction 
window. A 48-hour window was best for air pollution forecasting, while water quality trends 
needed a longer 72-hour window to capture more slowly moving trends. 

The optimal LSTM configuration was suggested (128 hidden units, dropout rate: 0.2, sequence length: 
48 hours for air pollution, 72 hours for water quality) by Bayesian Optimization. These fine-tuning led to a 
10% improvement in the forecasting accuracy and a 15% reduction in the computational overhead relative 
to the default configuration. 

3. Transformer model hyperparameter tuning 

The models based on the Transformer architecture were fine-tuned for performing cross-modal learning 
by merging the datasets on air, water, and soil pollution into a single predictive framework. The tuning 
process concentrated on attention mechanisms and embedding sizes, which are crucial for processing multi-
source environmental data. 

 Number of Attention Heads (4–8): Determines how the model attends to different parts of input 
sequences. More heads allow for richer feature extraction, but too many can cause overfitting and 
high computational costs. The optimal number was 6 attention heads, balancing expressiveness and 
efficiency. 

 Embedding Dimensions (64–256): Defines the size of input data’s vector representations. A higher 
embedding dimension retains more relationships, but too high values result in redundant 
information. We measured 128 dimensions as the best fit, as using more was not optimal to 
represent features nor too heavy on memory. 

By using Bayesian Optimization, each model’s hyperparameters were tuned which contributed towards 
higher prediction accuracy, model generalization and computation/time efficiency. These optimization 
methods resulted in quicker convergence velocities, lower error rate coefficients, and higher real-time 
applicability, making an artificial intelligence-driven environmental monitoring system more practical and 
trustworthy for installation on a large scale. 

3.4. Performance validation 
3.4.1. Error metrics 

Many error metrics were used to assess the accuracy and performance of the machine learning models 
used in this project to predict environmental pollution. These evaluation metrics are handled in Python code 
files that compile and then use through separate class objects those to examine various alternatives, such as 
prediction accuracy, robustness against outliers and detection of pollution events. Root Mean Squared Error 
(RMSE), Mean Absolute Percentage Error (MAPE), Coefficient of Determination (R²), and F1-Score for 
pollution event detection are the four main evaluation metrics used in this study. 

All these metrics are still handy for model evaluation and provide insights from another analytical 
perspective. The Root Mean Square Error (RMSE) measures the differences between predicted values and 
observed ones, giving extra weight to large errors at the whole. MAPE calculates percentage error relative to 
observed values so its only meaningful use is for prediction across different levels of pollution. R² measures 
the portion of variance that is duplicated by the model (the amount of variation in the data accounted for by 
the model) and indicates how much of any differences in the level of pollution can be explained by the 
predictors. 
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1. Root Mean Squared Error (RMSE) 

RMSE is a widely used metric that evaluates the average magnitude of prediction errors, with greater 
emphasis on larger errors. It is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖−1                                                                              (2) 

Where 𝑦𝑦𝑖𝑖represents the observed pollution level, 𝑦𝑦�𝑖𝑖 is the predicted pollution level, 𝑛𝑛 is the total number of 
observations. 

The accuracy of PM2 prediction by GBM, LSTM and Transformer models was compared using RMSE. 
5, salinity and soil pollution trends. GBM models had the lowest RMSE, confirming their high precision and 
ability to capture environmental pollution fluctuations. 

2. Mean absolute percentage error (MAPE) 

MAPE gives a percentage of how much relative error predictions are in, and it is useful for comparing 
performance across models for variables with different scales (pollutants in our case). It is given by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
�𝑛𝑛

𝑖𝑖−1                                                                              (3) 

MAPE evaluated the predictability of pollution levels in datasets covering air, water, and soil quality. 
MAPE being the lowest for GBM demonstrates the supremacy of GBM in pollution trend prediction. This 
measure had an added advantage in the context of our final models, they were all LSTM models, meaning 
that we could interpret it to provide a direct comparison of defined forecasting accuracies across the different 
pollutants. 

3. Coefficient of determination (R²) 

R², or the coefficient of determination, measures how well the model explains the variability of the 
observed data. It is computed as: 

𝑅𝑅2 = 1 − ∑(𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2

∑(𝑦𝑦𝑖𝑖−𝑦𝑦�)2
                                                                                      (4) 

Where 𝑦𝑦𝑖𝑖 represents the observed pollution value, 𝑦𝑦�𝑖𝑖 is the predicted value, 𝑦𝑦� is the mean of observed values. 
R² particularly useful in assessing the ability of Transformer-based models to integrate multi-source 
environmental data for cross-domain learning. GBM achieved the highest R² values across all environmental 
parameters, demonstrating its effectiveness in capturing complex interactions between pollutants. The metric 
validated that air pollution forecasting models performed better than soil contamination models, due to the 
more dynamic nature of airborne pollutants. 

4. F1-Score for pollution event detection 

F1-Score is a classification performance metric that evaluates the model’s ability to detect pollution 
spikes while minimizing false alarms. It is given by: 

𝐹𝐹1 = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

                                                                                      (5) 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 measures the fraction of correctly identified pollution events out of all predicted pollution 
events and  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 measures the fraction of actual pollution events that were correctly identified by the 
model. 

By framing reductions in PM2.5, turbidity, and heavy metals in terms of enforceable standards, the 
validation stage strengthens the link between AI predictions, environmental law, and public trust in 
governance [22, 25]. 
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3.4.2. Statistical analysis 

Statistical tests were conducted to assess the significance of differences in environmental pollution 
levels across regions and to evaluate the effectiveness of AI-driven monitoring in reducing pollution. The 
following analyses were performed: 

1. Analysis of variance (ANOVA) for regional pollution differences 

The one-way Analysis of Variance (ANOVA) test was applied to examine whether the mean pollution 
levels significantly differed between Region 1 (R1), Region 2 (R2), and Region 3 (R3) for air, water, and soil 
quality parameters [28]. The null hypothesis (H0) stated that there were no significant differences in pollution 
levels among the three regions, while the alternative hypothesis (Ha) suggested at least one region had 
significantly different pollution levels. 

𝐻𝐻0: 𝜇𝜇𝑅𝑅1 = 𝜇𝜇𝑅𝑅2 = 𝜇𝜇𝑅𝑅3 

𝐻𝐻𝑎𝑎:𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                                                       (5) 

For each environmental parameter (𝑋𝑋), the test statistic was computed as: 

𝐹𝐹 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑖𝑖𝑖𝑖−𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

=
∑ 𝑛𝑛𝑗𝑗�𝑋𝑋�𝑗𝑗−𝑋𝑋��

2
/(𝑘𝑘−1)𝑘𝑘

𝑗𝑗−1

∑ ∑ 𝑛𝑛𝑗𝑗�𝑋𝑋�𝑖𝑖,𝑗𝑗−𝑋𝑋�𝑗𝑗�
2

/(𝑁𝑁−𝑘𝑘)
𝑛𝑛𝑗𝑗
𝑗𝑗−1

𝑘𝑘
𝑗𝑗−1

                                                    (6)                                                                             

Where 𝑘𝑘 number of groups (regions), 𝑁𝑁 total number of observations, 𝑋𝑋�𝑗𝑗 mean of region 𝑗𝑗, 𝑋𝑋� grand mean 
across all regions 𝑋𝑋�𝑖𝑖,𝑗𝑗 individual observations. 

Since p<0.05, the null hypothesis was rejected, confirming that pollution levels varied significantly 
across regions, justifying the need for region-specific environmental monitoring interventions. 

2. Paired t-Test for PM2.5 reduction post-model implementation 

To assess the effectiveness of AI-driven pollution monitoring and prediction, a paired t-test was 
conducted to compare PM2.5 levels before and after model deployment. The null hypothesis (H0) stated that 
there was no significant reduction in PM2.5 levels, while the alternative hypothesis (Ha) suggested a 
significant decrease. 

𝐻𝐻0: 𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝐻𝐻𝑎𝑎: 𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝 > 𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                                                                (7) 

The test statistic was calculated as:  

𝑡𝑡 = 𝐷𝐷�

𝑠𝑠𝐷𝐷√𝑛𝑛
                                                                                          (8) 

Where 𝐷𝐷� mean difference between pre- and post-model implementation values, 𝑠𝑠𝐷𝐷 standard deviation of the 
differences, 𝑛𝑛 sample size. 

Since p<0.01, the null hypothesis was rejected, confirming that the AI-driven monitoring system 
significantly reduced air pollution levels, likely due to early warning alerts, optimized traffic flow, and 
enhanced regulatory enforcement. 

3. Tukey’s HSD test for soil contamination differences 

To determine which regions exhibited significant differences in soil contamination, a Tukey's Honest 
Significant Difference (HSD) test was conducted following the ANOVA. This test controlled for multiple 
comparisons by adjusting for family-wise error rate. 

The HSD statistic was calculated as: 
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𝑞𝑞 =
𝑋𝑋�𝑖𝑖−𝑋𝑋�𝑗𝑗

𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∙�
1
𝑛𝑛𝑖𝑖
+ 1
𝑛𝑛𝑗𝑗

                                                                                       (9)                                                                                

Where 𝑋𝑋�𝑖𝑖,𝑋𝑋�𝑗𝑗 means of groups 𝑖𝑖 and 𝑗𝑗, 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is pooled standard deviation, 𝑛𝑛𝑖𝑖,𝑛𝑛𝑗𝑗 sample sizes of respective 
groups. 

Since p<0.05, these results confirmed that soil contamination levels varied significantly based on land 
use type, supporting targeted remediation strategies and land-use planning policies. 

This methodology has developed a comprehensive AI-based paradigm for air, water, and soil quality 
monitoring, and regulatory compliance. This method serves as a scalable solution for automated 
environmental assessment by integrating sensor networks, advanced ML models, and real-time anomaly 
detection. By leveraging multi-source data fusion, ensuring robust preprocessing and predictive analytics, 
this allows for a proactive approach towards environmental risks with minimum manual oversight possible 
while increasing forecasting accuracy [1]. 

4. Results 
4.1. Air quality results 

The enhanced air quality dataset had resulted in more precise estimates of pollutant concentration 
across the region, and integrated real time sensor data and predictive analytics. PM2. 5, NO₂, and SO₂ data 
were provided with higher cadence, enabling a tighter view of pollution hotspots. Results showed that in R1 
sites, the NO₂ levels were high and persistent due to heavy traffic and industrial emissions. Most of the 
highest PM2. 5 levels, which varies considerably according to seasonal meteorological conditions. In rural 
areas whose pollution levels were less (R3), it was seen that even there were spikes in SO₂ which might be 
due to the agricultural practices in the area. 

Table 1. mean concentrations of air pollutants across monitoring regions. 

Region PM2.5 Mean ± 
SD (µg/m³) 

PM10 Mean ± 
SD (µg/m³) 

NO₂ Mean ± 
SD (ppb) 

SO₂ Mean ± 
SD (ppb) 

Max PM2.5 
(µg/m³) 

Min PM2.5 
(µg/m³) 

R1 (Urban) 21.8 ± 4.5 30.2 ± 5.6 18.5 ± 2.3 7.2 ± 1.1 32.1 13.5 

R2 
(Suburban) 25.4 ± 5.1 33.8 ± 6.2 20.1 ± 3.0 7.5 ± 1.2 36.5 14.2 

R3 (Rural) 19.7 ± 3.9 28.5 ± 5.1 16.4 ± 2.1 6.9 ± 1.0 29.8 12.8 

The results show PM2. 5 and PM10 concentrations observed in suburban regions (R2) were 
considerably elevated, measuring at an average of 25.4 ± 5.1 µg/m³ and 33.8 ± 6.2 µg/m³ respectively. That 
was probably a result of traffic-related emissions and meteorological phenomena that trap fine particulate 
matter. The maximum NO₂ concentrations, 18.5 ± 2.3 ppb, were present in urban locations (R1); this is most 
likely due to traffic emissions and industrial emissions, confirming findings of earlier research on urban 
pollution hotspots. PM2.0 concentrations (R3) were lowest in rural areas. Although levels remained high 
with median N₂ and SO₂ (30 ppb) with occasional peaks in SO₂, seasonal burning of agricultural waste could 
be a contributing factor. These differences highlight the importance of pollutant-specific control strategies in 
different regions. 

Real-time sensor data is tested against different AI models to validate its applicability in predicting air 
pollutants levels. The Gradient Boosting Machine (GBM) model outperforms all other models, while 
Transformer-based models lock closely behind. The results obtained from the prediction using Random 
Forests and LSTM would be comparatively good, however both models failed when predicting short-term 
pollution spikes which attracted a higher prediction error. 
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Table 2. Model performance for air quality predictions. 

Model RMSE (PM2.5 
µg/m³) 

MAPE 
(%) 

R² 
Score 

F1-Score (Pollution Spike 
Detection) 

Random Forest 2.9 7.8 0.89 88.7 

Gradient Boosting Machine 
(GBM) 2.1 6.4 0.94 92.0 

LSTM (Time Series Model) 2.5 7.1 0.91 90.3 

Transformer-Based Model 2.3 6.8 0.92 91.1 

The GBM model exhibited the lowest RMSE (2.1 µg/m³) and the highest R² score (0.94), 
outperforming all other models in PM2. 5 trends. In summary, boosted ensemble learning methods 
effectively captured the both long-term pollution trends as well as short-term fluctuations. The LSTM 
models performed well in general, but were slightly less accurate due to their complex time-series 
dependency. The competitive performance of the Transformer model also showed potential effectiveness on 
non-linear relationships of the air pollution dataset with deep-learning approaches. The results also 
demonstrate that ensemble and deep-learning-based methods are very suitable for real-time air quality 
prediction. 

This measurable reduction is not only a scientific finding but also demonstrates compliance with WHO 
and national air quality thresholds, making it directly relevant for regulatory enforcement [2, 22]. Furthermore, 
the high interpretability of GBM outputs strengthens institutional credibility, allowing regulators to justify 
interventions transparently and thereby enhance public trust in environmental governance [1, 18]. 

4.2. Water quality results 
The processed water quality dataset showed seasonal and geographical variations in pH, turbidity, and 

dissolved oxygen levels for all monitoring stations. In conclusion, the results revealed increased turbidity 
levels during periods of heavy rainfall, signifying potential sediment and pollutant runoff. Decreased 
dissolved oxygen (DO) concentrations during summer months indicate higher microbial activity and lower 
oxygen solubility at warmer temperatures. 

Table 3. Water quality indicators across monitoring stations. 

Station Observed pH ± 
SD 

Predicted pH ± 
SD 

Turbidity (NTU) 
Observed 

Turbidity 
Predicted 

Dissolved Oxygen (mg/L) 
Observed 

S1 7.2 ± 0.2 7.2 ± 0.2 0.5 ± 0.1 0.4 ± 0.1 8.5 ± 0.6 

S2 6.8 ± 0.3 6.9 ± 0.3 0.6 ± 0.2 0.5 ± 0.2 7.9 ± 0.5 

S3 7.3 ± 0.3 7.3 ± 0.3 0.4 ± 0.1 0.3 ± 0.1 8.1 ± 0.5 

Water pH was also constant across all monitoring locations, and there was little variation between the 
water pH values observed and those predicted by the model, indicating that trends of water pH could be 
accurately captured using AI-driven models. Across all monitoring stations, pH levels consistently ranged 
between 6.4 and 7.8, remaining within acceptable ecological thresholds, while dissolved oxygen (DO) values 
fluctuated between 6.1 and 9.3 mg/L depending on seasonal temperature shifts. These ranges align closely 
with the predictions generated by the LSTM and GBM models, reinforcing the validity of the combined 
sensor–AI evaluation pipeline. The maximum turbidity was registered in urban areas (S2) at 0.6 NTU, likely 
owing to runoffs from infrastructure and human activities. The levels of dissolved oxygen exhibited a 
seasonal decline, most pronounced at suburban sites (S2), as predicted by the temperature-oxygen solubility 
relationship. These findings further emphasize the utility of AI models in effectively monitoring and 
predicting fluctuations in water quality, enabling the development of preemptive strategies for 
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contamination detection and intervention. Comparable studies have documented similar predictive reliability 
of AI systems for water resource management, noting that multimodal AI–IoT architectures can improve 
contamination detection speed and reduce decision-making latency for environmental regulators [41, 42]. These 
findings reinforce the applicability of the present model for policy-relevant water governance. 

The ability to cross-validate real-time IoT data with remote sensing enhances transparency and 
minimizes disputes in legal or policy settings [26, 40]. In addition, the integration of multiple data sources 
bolsters confidence among local communities that monitoring platforms are unbiased and reliable, thus 
improving acceptance of compliance obligations [16, 29]. 

4.3. Soil quality results 

The consolidated soil data included an in-depth comparative analysis of heavy metals contamination 
levels according to different land-use types with special emphasis on lead (Pb) and cadmium (Cd) data. The 
quality of the soil ranked low but varied by region, as traces were more prominent in industrial and urban 
locations. The decreasing trend of lead levels for the monitoring period indicates the effectiveness of 
remediation measures in some areas. Cadmium levels were relatively stable, with increased concentrations in 
industrial areas because of long-term emissions from industrial activity. 

Table 4. Heavy metal concentrations across soil sampling sites. 

Site Lead (mg/kg) 
Observed 

Predicted Lead 
(mg/kg) 

Cadmium (mg/kg) 
Observed 

Predicted 
Cadmium (mg/kg) 

Reduction in Lead 
Levels (%) 

Site 1 (Urban) 10.9 ± 1.2 10.8 ± 1.1 2.1 ± 0.3 2.1 ± 0.2 12.5 

Site 2 
(Industrial) 12.2 ± 1.3 12.0 ± 1.2 2.5 ± 0.4 2.4 ± 0.3 8.9 

Site 3 
(Suburban) 9.8 ± 1.1 9.7 ± 1.0 1.9 ± 0.2 1.8 ± 0.2 14.3 

Site 4 
(Agricultural) 8.5 ± 0.9 8.4 ± 0.8 1.7 ± 0.2 1.7 ± 0.1 16.1 

Lead concentration in the soil was found to decrease by 12.5% in urban areas and over 16.1% in 
agricultural ones, where natural processes of bioremediation could be used to reduce metals. However, the 
industrial sites (Site 2) showed the least decrease (8.9%), suggesting that the pollution sources are still active 
and need more strict mitigation measures. Regular monitoring and strict regulations are emphasized by 
consistently high levels in industrial sites. These results emphasize the value of site-specific remediation 
efforts based on land-use attributes. 

Different machine learning models were compared to the AI-based soil quality predictions to measure 
their efficiency. Four modelling techniques were compared, and it was found that the GBM model 
significantly outperformed the other techniques, especially with respect to the prediction of lead levels (the 
target heavy metal in question). 

Table 5. AI model performance for heavy metal contamination predictions. 

Model R² Score 
(Lead) 

R² Score 
(Cadmium) 

Mean Absolute Error 
(mg/kg) 

Prediction Latency 
(s) 

Random Forest 0.89 0.87 0.3 4.2 

Gradient Boosting Machine 
(GBM) 0.92 0.91 0.2 3.6 

LSTM (Time Series Model) 0.90 0.89 0.3 5.8 

Transformer-Based Model 0.91 0.90 0.2 6.1 
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The best R² scores for lead and cadmium (0.92 and 0.91, respectively) were produced by the GBM 
model, indicative of strong predictive performance. Among the models, GBM showed the lowest mean 
absolute errors (0.2 mg/kg) and was the most reliable model for soil contamination assessments. Although 
the LSTM and Transformer models performed competitively, the significantly higher prediction latency of 
5.8s and 6.1s, respectively, indicates that these methods are less efficient for real-time monitoring   These 
results show that AI can deliver accurate, near-real time predictions of contamination, facilitating a quicker 
response to soil pollution events. 

Because soil contamination carries direct regulatory consequences for agriculture and land use, these 
reductions demonstrate how AI-enhanced monitoring can support evidence-based liability assessment [13, 31]. 
The capacity to communicate soil quality improvements in a transparent, data-driven manner also builds 
public trust, ensuring that remediation policies are not only enforceable but also socially legitimate [7, 37]. 

4.4. Integrated multi-parameter environmental evaluation 
A comprehensive analysis of the environment was carried out by creating a multi-modal pollution 

prediction framework by combining the AI models from all areas. The performance of these models was 
further analyzed according to prediction accuracy, precision, recall, and ability to detect environmental 
anomalies efficiently. 

Table 6. Water use efficiency by leadership diversity quartile. 

Domain Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Air Quality 94.2 93.0 93.5 93.2 

Water Quality 92.7 91.8 92.1 91.9 

Soil Quality 93.5 92.4 93.1 92.7 

Combined Environmental Model 93.7 92.5 93.1 92.8 

The accuracy of the overall integrated model was 93.7%, where air quality prediction (94.2%) was the 
best. In Weighted Average, precision and recall scores were high across environmental parameters reflecting 
the ability of the AI system to accurately detect pollution spikes and long-term contamination trends. This 
needs utilization of different data types — air; water; soil integrated together, and this turned out to be the 
fulcrum for this analysis facilitating more holistic view which not just enhances predictive ability, but can 
lead to early warning system. 

4.5. Statistical validation of ai-driven environmental monitoring 
Statistical tests were conducted to determine the significance of the observed reduction trends in 

pollution and also to compare environmental quality across regions which further ensured the reliability of 
the AI models trained. 

Table 7. Composite sustainability scores by leadership diversity quartile. 

Metric ANOVA 
(p-value) 

Paired t-Test 
(Mean Reduction) 

Tukey HSD 
(Regional Differences, p-value) 

PM2.5 (µg/m³) 0.02 12% reduction (p < 0.01) Significant (p = 0.02) 

NO₂ (ppb) 0.03 9% reduction (p < 0.05) Significant (p = 0.03) 

SO₂ (ppb) 0.04 8% reduction (p < 0.05) Moderate (p = 0.06) 

Turbidity (NTU) 0.01 15% reduction (p < 0.01) Significant (p = 0.01) 

Lead (mg/kg) 0.05 10% reduction (p < 0.05) Significant (p = 0.02) 
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The ANOVA test confirmed that air, water and soil pollution levels varied across regions (p < 0.05), 
which confirmed the significant differences in pollution sources across regions. The paired t-tests showed a 
12% decrease of PM2. 5 points and 15% decrease of water turbidity, show that the AI-driven interventions 
based on drone flyover images significantly impacted the dormitory's environmental quality. By confirming 
statistically significant regional differences, Tukey’s HSD test justified the need for location-specific 
environmental policies. 

The statistical analysis was based on a total of 216 air-quality observations, 144 water-quality samples, 
and 96 soil assays collected across the three monitoring regions. Effect-size calculations indicated substantial 
practical significance, with η² = 0.41 for PM₂. ₅ reductions, η² = 0.37 for turbidity improvements, and η² = 
0.33 for soil lead mitigation. Complementary pairwise comparisons showed medium-to-large effect sizes 
(Cohen’s d ranging from 0.62 to 1.05), confirming that the observed pollutant reductions align not only with 
statistical significance but with meaningful environmental impacts. These quantitative gains correspond 
directly to improvements in model accuracy, indicating a strong association between predictive performance 
and monitored environmental outcomes (recent studies report similar patterns in AI-driven water and soil 
monitoring  [5, 41, 42]. 

This improves frequency, accuracy, and predictive capabilities of detecting environmental factors, 
including pollution levels. We reasoned that analyzing these datasets together would allow better 
interpretation of results, so we integrated them into a unified framework that enables fine-grained anomality 
discovery to tackle environmental issues with precision. The statistical validation affirmed the effectiveness 
of AI-driven solutions in realizing concrete pollution reductions and demonstrated that these approaches 
enhance compliance with environmental policies and strengthen long-term sustainability initiatives. 

By demonstrating quantifiable improvements (e.g., 12% PM2.5, 15% turbidity, 16% Pb reduction), the 
models provide actionable metrics that regulators can use in drafting and enforcing compliance policies [25, 28]. 
Statistical rigor reinforces the admissibility of AI outputs in both scientific and legal frameworks, while 
interpretability ensures stakeholder confidence in adopting these technologies [32, 33]. 

4.6. Policy and social implications 
The empirical results of this study demonstrate that AI-driven environmental monitoring can deliver 

more than technical improvements; they establish a pathway for reshaping compliance and governance 
practices. The reductions observed in air pollutants, water turbidity, and soil contaminants illustrate how 
advanced analytics can be directly translated into enforceable standards, providing policymakers with 
evidence that supports stronger environmental regulation. 

At the same time, the interpretability of the models ensures that results are not viewed as opaque outputs 
of a “black box,” but as transparent, auditable evidence that can be used with confidence in both legal and 
institutional contexts. This quality is crucial in bridging the gap between technological innovation and 
regulatory acceptance. 

From a societal standpoint, the integration of multiple validated data sources fosters public confidence 
in the credibility of monitoring systems. Trust in these systems is not a peripheral concern but a determining 
factor in whether communities and industries accept and comply with environmental regulations. Without 
social legitimacy, even the most accurate technologies risk being underutilized or contested. 

The findings highlight that AI and ML are not only instruments of environmental science but also 
vehicles for strengthening governance. They reinforce accountability, facilitate compliance, and help align 
institutional frameworks with public expectations. In this sense, the technology becomes both a scientific 
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tool and a social contract mechanism, enabling more sustainable, transparent, and widely accepted 
environmental management. 

5. Discussion 
The article demonstrates the potential of AI and machine learning (ML) models to improve 

environmental monitoring for air, water and soil quality. Thanks to a combination of state-of-the-art IoT 
sensors, cloud-based AI, and statistical validation methods, we were able to achieve highly accurate real-time 
pollution detection and predictive analysis. The results indicate that the Gradient Boosting Machines (GBM) 
were a powerful concurrence for all other ML models used in this experiment with higher accuracy for 
predicting the pollutants' levels. These findings are consistent with earlier studies that highlighted the 
promise of AI in environmental change monitoring but also indicate where improvements still are necessary. 

Beyond technical accuracy, these outcomes highlight the importance of ensuring that model outputs are 
perceived as trustworthy by regulators, industries, and communities [1, 18]. Without public acceptance and 
institutional legitimacy, even the most accurate predictive models may fail to translate into real-world 
compliance or behavioral change [16]. 

Importantly, this study represents the potentially the most comprehensive multi-modal integration of 
environmental parameters in existing literature. Existing works related to individual air-pollutant such as 
predicting air quality with deep learning[29] or predicting water quality with neural networks [24]. In contrast, 
this study is the first of its kind to create an air, water and soil data, merged into a single model, from which 
the resultant can be an all-rounder examination of the trends of pollution in the environment. This 
integration is key to modeling cross-domain dependencies, for instance the influence of air pollutants on soil 
content or the relationship between industry emissions and turbidity level in nearby water. 

From a governance perspective, such integration has additional implications: multi-domain monitoring 
creates a more transparent evidence base, which can be used to strengthen environmental legislation and 
improve accountability mechanisms [2, 31]. 

Compared to Lowe et al.'s work [26], which surveyed recent AI applications in water treatment and 
monitoring, this study further builds upon the discussion by proposing a predictive modeling framework that 
leverages heterogeneous environmental data sources. Most past studies on AI have centered around reactive 
strategies, for example, AI-aided identification of contaminants in water bodies; our suggested approach 
involves proactive forecasting which empowers early remediation before pollutants reach dangerous limits. 
Monitoring is moving from reactive to predictive monitoring, which is a major breakthrough in our 
environmental management strategies. 

Predictive monitoring also reshapes social expectations: when pollution is forecast in advance, 
policymakers and communities can engage in proactive mitigation, reinforcing a shared responsibility for 
sustainability [14, 19]. 

Moreover, this study extends the findings of Wan et al. studied Deep Learning models for predicting 
water turbidity [24]. Although their findings confirmed that RNNs are consistent in processing time-series 
variation, this study indicates that GBM models outperform RNNs, in terms of overall efficacy, despite their 
computational overhead. Furthermore, boosted decision trees perform better than standard neural networks 
and can be more efficiently deployed in smart real-time environmental monitoring systems. The 
interpretability of boosted decision trees is also crucial, since interpretable models enhance transparency and 
improve public confidence in AI-driven decision-making [32, 33]. 
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The use of AI for forecasts of air quality has been well analyzed in literature, especially in works such 
as published by Subramaniam et al.[29] that reviewed AI-driven forecasting models in the atmospheric 
system, more specifically, for air pollution. Their results show that the meteorological-based models were 
limited and that using machine learning can result in the improved accuracy. This study validates those 
findings: AI-driven models also yielded a 12% drop in PM2. 5 for early warnings and adaptive mitigation 
strategies. The transformer-based models and LSTM architectures evaluated in this work further highlighted 
the great efficiency of deep learning when it comes to modeling short-term pollution dynamics, even if their 
demanding computational requirements prevent real-time implementation. However, successful 
implementation requires more than model efficiency: policy uptake and social trust determine whether early 
warnings are acted upon effectively [7, 37]. These findings also correspond with new applications of AI in 
large-scale forestry management and aquatic biodiversity modeling, where deep learning architectures have 
been shown to capture complex ecological interactions with unprecedented accuracy [3, 5]. 

From a soil monitoring view, this study complements a recent review by Chen & Wang[38] examined the 
potential of heterogeneous sensor networks for soil characterization at large scales. In their research, it was 
shown that active learning methods increase the efficiency of data gathering, which is in line with what is 
observed in this study, where the results of a spatiotemporal Kriging interpolation showed that two samples 
significantly improved predictions of soil contamination. But there is one major limitation: current AI 
models are not good at predicting trends over longer time scales for soil quality because contamination 
spreads slowly. While many of the soil degradation processes are slow, causes of air and water pollution 
show extreme variability over short time scales, making long-term historical datasets necessary to improve 
model reliability. This limitation also reveals a governance challenge: regulators must balance the short-term 
variability of pollution with the long-term progression of soil degradation—highlighting the need for policies 
that integrate both immediate forecasting and long-term resilience planning [13, 25]. 

The study also provides bearing challenges and constraints that need to be solved in further studies 
despite promising outcomes. One area that is a limitation is data variability between geographic regions and 
its effect on generalizability of AI models. Although predictions achieved high accuracy within the places of 
study, calibrating the models to variable climatic or industrial situations would likely need to be performed 
in another place. Fan et al. [14] raised similar concerns in study of how AI models can adapt to applications in 
environmental sustainability. The study stated that AI models trained on a certain dataset tend to fail when 
encountering unseen environments, hence a push to develop adaptive algorithms. In this respect, 
generalizability is not only a technical problem but also a social one: stakeholders are less likely to trust 
monitoring systems if they appear to fail outside controlled conditions [28]. Recent research similarly notes 
that environmental AI adoption depends on public confidence in the fairness, transparency, and accuracy of 
algorithmic tools, particularly among youth and environmentally active communities [43]. Trust-building 
mechanisms, including explainable AI interfaces and transparent IoT data-sharing frameworks, are 
increasingly recognized as central to enhancing compliance behavior and encouraging pro-environmental 
decision-making. Building adaptive models that can demonstrate robustness across contexts is therefore 
essential for maintaining legitimacy [16]. 

Another restriction concerns sensor reliability and missing data issues especially in monitoring of water 
and soil quality. Although the Kalman filter and reconstruction techniques based on autoencoders were 
employed to address the problem of missing data, sensor failures and communication problems remain to be 
solved. As Reis et al. [18], AI-driven applications for data science have inherent challenges when it comes to 
hardware degradation and signal interference in sensor networks, resulting in systematic biases. Addressing 
this will need self-correcting AI models that are capable of auto-regulation to overcome sensor failures, and 
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missing data in real-time. Reliability also has a psychological dimension: when communities perceive 
frequent breakdowns or inconsistencies in monitoring data, their confidence in enforcement and compliance 
declines [16]. Future AI systems must therefore address both technical resilience and perceived 
trustworthiness [1]. Other studies warn that AI adoption for natural resource and environmental safety 
management requires explicit legal frameworks to avoid compliance disputes, ensure admissibility of 
algorithmic evidence in judicial settings, and maintain procedural fairness in environmental litigation [11, 34]. 

Findings are also in line with the work of Korra & Sadhana [19], in which Internet of Things sensors, 
cloud AI and satellite broadband are integrated for monitoring environmental elements in real time. Although 
their study highlighted the relevant applications of the smart city infrastructures in the realm of pollution 
management, this study builds on their framework by proving the efficacy of the predictive AI models not 
only in urban contexts but also exploring their applicability in rural and industrial contexts. However, there 
is still a lag in data transmission, particularly in areas with little to no connectivity. Further work needs to 
focus on optimizing the edge architecture to reduce the latency in AI-based environmental monitoring. This 
is consistent with 2025 evidence showing that federated and distributed learning architectures can help 
mitigate digital inequities by allowing local monitoring systems to function even under limited connectivity, 
thus maintaining environmental safety across heterogeneous regions [36]. Connectivity gaps also raise equity 
issues: if only well-connected regions benefit from AI-based oversight, disparities in environmental 
protection may widen, reducing societal trust in governance mechanisms [2]. 

Additionally, the outcomes underscore the importance of policy formulation and regulatory adjustment 
to ensure that AI-enabled environmental tracking translates into meaningful benefits. Literature such as 
Adefemi et al.[16] argues that for effective protection of the environment, AI-centric pollution tracking 
systems should be integrated into government policy frameworks. This study illustrates that even if AI 
models generate more precise forecasts, the effectiveness of these systems is ultimately determined by their 
uptake by policy makers, industries and municipal authorities. Thus, the social legitimacy of AI is as 
important as its technical capacity: adoption depends on whether stakeholders trust the system and perceive it 
as aligned with their rights, duties, and collective environmental goals [7, 33]. 

Although this study focused on predictive modeling and data-driven insights, the integration of AI with 
autonomous intervention systems can be explored in future research. Recent developments in AI-enabled 
robotic remediation and automated pollution control systems indicate that AI has the potential not just to 
monitor but to actively reduce environmental pollution [31]. The next step toward creating self-sustaining 
frameworks for environmental protection will be to investigate how machine learning can be integrated with 
autonomous remediation systems. Future research should also examine the psychological and institutional 
readiness for such interventions, since their success will rely not only on technical performance but also on 
acceptance by regulators, industries, and affected communities [14, 37]. 

Evidence from literature supports this conclusion, emphasizing that integrated AI–IoT–remote sensing 
architectures are becoming foundational elements of global sustainability strategies, climate-change 
mitigation initiatives, and environmental protection systems. These developments highlight the growing 
importance of data-driven, legally aligned, and socially trusted AI infrastructures for environmental 
governance. 

The article illustrates how transformative AI and machine learning can be to environmental monitoring, 
delivering accurate predictions of pollution levels, near-real-time anomaly detection, and the ability to 
integrate cross-domain datasets. As indeed this comparison with other literature shows that research in the 
field of AI-based environmental insight has experienced a noticeable professionalization; however, 
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generalizability of data, reliability of sensors, and adaptability of policy all remain major challenges. By 
focusing on scalable AI frameworks, adaptive learning techniques, and autonomous intervention systems, 
future studies will offer transformative potential that converts AI-driven environmental monitoring into 
actionable and sustainable solutions. The broader impact of this work lies not only in advancing 
environmental science but also in showing how AI can strengthen compliance regimes, foster societal trust, 
and contribute to sustainable governance [1, 2, 16]. This dual contribution: scientific precision and social 
legitimacy—marks the key to making AI-driven monitoring a cornerstone of environmental psychology and 
policy [18, 31]. 

The strong alignment between predicted and observed pollutant patterns demonstrates that high-
accuracy AI systems can directly support evidence-based regulatory interventions. When deployed within 
environmental agencies, such predictive stability enables earlier issuance of compliance warnings, more 
targeted inspections, and scientifically defensible policy decisions. This outcome echoes broader findings 
that AI-supported governance frameworks enhance institutional transparency and increase the public’s 
willingness to trust environmental information generated by automated systems (recent governance-oriented 
environmental studies support similar conclusions [11, 12, 43]. 

6. Conclusions 
Environmental monitoring has also been aided with the use of AI and machine learning techniques that 

have proven to significantly invest in improving the accuracy, efficiency and prediction of pollution in the 
air, water and soil. A key take-away from the study was the successful generation of an AI-powered multi-
modal environmental detection framework by utilizing the real-time data from IoT sensors and state-of-the-
art machine learning methods to predict pollution trends and discover anomalies. Enabling such predictive 
models would facilitate these proactive instead of reactive solutions. The research is enlightening because it 
shows the role of Artificial Intelligence (AI)-based approaches like gradient boosting machines, long short-
term memory networks, and transformer-based architectures towards improved forecasting accuracy and 
pollution detection that enable timely and data-driven environmental management decisions. 

The findings provide compelling evidence that AI-enable environmental monitoring enhances pollution 
assessment across diverse geophysical contexts, closely capturing geographical variation in pollution and 
pollution dynamics. Notably, the advanced feature engineering techniques and statistical validation 
methodology adopted contributes to the robustness of the AI models, making it capable of identifying 
breakthrough environmental hazards at unprecedented levels of sensitivity. Based on these results, it is 
further highlighted in the study that cross-domain correlations could be introduced into a combined AI model 
by integrating multi-dimensional environmental parameters into the same network, which could facilitate a 
profound comprehension of that pollution sources, interactions and long-term trends. And integrating air, 
water and soil data into a unified predictive framework is a significant advance in terms of environmental 
analytics, providing informed insights not available through conventional monitoring techniques. 

In spite of the numerous advantages of AI-based monitoring, there still some challenges and limitations 
that should be addressed in order to improve AI monitoring system in long term. One of the crucial things is 
variability in data due to different environmental circumstances, which might restrict the generalization of 
AI models in other regions. Sensor networks are commonly pioneers in real-time data collection and 
therefore the integrity of AI-based predictions could be compromised due to hardware failure, data voids, 
and transmission delays. Besides, computationally expensive deep-learning based models may also pose 
scalability issues in resource-poor settings with poor digitally enabled infrastructure or cloud computing 
capabilities. These challenges highlight the importance of the need for flexible learning strategies, refined 
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sensor calibration methods and robust computing platforms to facilitate continuous and accurate monitoring 
of the environment. 

This study further enhances this concept by making the models transferable using the transfer learning 
and reinforcement learning approaches, which now that is an area of research for AI models to learn from 
cross environmental conditions. Moreover, AI technologies with built-in autonomy concerning intervention 
could also provide the protection of ecosystems, enabling a form of automation of pollution control, instant 
remediation, and optimal regulatory enforcement. Research investigating the role of AI for climate 
adaptation strategies and disaster response would enable a better understanding of the contribution of AI-
powered environmental monitoring tools towards broader goals of sustainable global development. 

The study highlights the potential of AI and machine learning to change the landscape of environmental 
science and transform how pollution is assessed and managed. As artificial intelligence technologies evolve, 
their adoption within the context of environmental policy, smart city infrastructure, and industrial regulation 
will be critical to realize their full promise. AI-powered environmental monitoring has the potential to 
enhance sustainability and environmental management by building on existing challenges and monitoring 
innovations, and contributing to greater data-driven decisions and ultimately a healthier global ecosystem 
space. 

The study underscores that technical innovation alone is not sufficient: for AI to deliver lasting value, it 
must be embedded in governance systems that emphasize compliance, accountability, and fairness. The 
social acceptance of these technologies—rooted in transparency, trust, and perceived legitimacy will 
determine whether they become widely adopted or resisted. By aligning predictive power with psychological 
and societal dimensions, AI-driven monitoring can evolve from being a scientific tool to serving as a 
foundation for collective environmental stewardship. This dual capacity, advancing precision while 
reinforcing trust, marks its most transformative potential within environmental psychology and policy. 
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