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ABSTRACT 

Smart-campus initiatives in Shanghai have expanded rapidly, yet evidence on students’ adoption of campus 

Internet of Things (IoT) services remains mixed. This study integrates the Unified Theory of Acceptance and Use of 

Technology with two contextually salient antecedents, reliable Internet connection and security or privacy concern, to 

explain intention to use campus IoT in higher education. We employed a cross-sectional student survey and 

complementary tutor interviews. The quantitative strand tested separate bivariate models for key predictors, and the 

qualitative strand used thematic analysis to contextualize mechanisms and barriers. 

Findings indicate an infrastructure-first pathway. When campus connectivity is stable and low-friction, students 

treat IoT as an ambient utility, and intention to use increases, while traditional cognition-centric predictors play a 

smaller role. Perceived usefulness remains a consistent positive driver; privacy concerns can be addressed through clear 

policies and visible safeguards; and brief onboarding helps novices move from trial to routine use. The study 

contributes a pragmatic extension of technology-acceptance work by specifying infrastructure readiness and privacy 

governance as first-order antecedents of adoption in higher education. Practical recommendations include campus-level 

connectivity targets, streamlined authentication, plain-language data-use messaging, and micro-orientations at the start 

of courses. Limitations include a single-city scope and a cross-sectional design; future research should validate the 

infrastructure-first thesis using multivariable models and multi-site samples.   

Keywords: internet of things; higher education; UTAUT; infrastructure readiness; privacy; behavioral intention 

1. Introduction 

Universities worldwide are accelerating “smart campus” programs that instrument learning spaces and 

student services with Internet of Things (IoT) devices and platforms. Conceptual syntheses frame smart 

campuses as layered sociotechnical systems, where physical infrastructure (sensors, connectivity, and power) 

underpins cyber-data services for teaching, operations, and the student experience[1]. In such settings, 

network reliability and authentication frictions can become binding constraints for everyday use, raising a 

pragmatic question: when does infrastructure reliability outweigh cognition-centric predictors of adoption? 

Behavioral models remain the baseline for explaining technology uptake. The Unified Theory of 

Acceptance and Use of Technology (UTAUT) posits performance expectancy, effort expectancy, social 
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influence, and facilitating conditions as proximal determinants of intention and use[2]. UTAUT2 extends this 

view with hedonic motivation, price value, and habit for consumer-style technologies[3]. Applications in 

higher education consistently find that perceived usefulness and supportive environments matter, though 

effect sizes vary by context[4,5].  

Post-pandemic evidence also emphasizes the quality of access, latency, stability, and device readiness, 

rather than merely counting access. Across university and system-level studies, Internet stability and 

broadband quality predict satisfaction and participation in online learning and can widen inequalities when 

unreliable[6]. For campus IoT, this implies operationalizing UTAUT’s “facilitating conditions” with granular 

connectivity indicators (e.g., reliable Internet connection across lecture halls and dorms) rather than treating 

infrastructure as a background control. 

A second cross-cutting mechanism is privacy and trust. Research shows that privacy concerns are 

context-dependent and malleable[7], while trust in the platform/institution interacts with perceived risk to 

shape adoption of data-intensive public services[8]. Because campus IoT may log movement, usage, and 

learning artifacts, addressing privacy/security can remove deterrents and complement infrastructural 

upgrades. Accordingly, this study extends UTAUT with two contextual antecedents - reliable Internet 

connection (RIC) and security/privacy concern (SPC), to test whether infrastructure readiness and data-

practice perceptions help explain students’ intention to use campus IoT in Chinese higher education. 

1.1. Research questions 

RQ1. To what extent do UTAUT constructs, performance expectancy (PE), effort expectancy (EE), 

social influence (SI), and facilitating conditions (FC), predict students’ intention to use IoT in Shanghai 

higher education institutions? 

RQ2. How strongly is a reliable Internet connection (RIC) associated with students’ intention to use IoT, 

relative to the UTAUT predictors? 

RQ3. How are security/privacy concerns (SPC) related to students’ intention to use IoT? 

RQ4. What practical barriers and facilitators reported by tutors help explain the quantitative patterns 

observed in RQ1-RQ3? 

1.2. Literature Review & Hypotheses 

1.2.1. UTAUT and technology adoption in higher education 

The Unified Theory of Acceptance and Use of Technology (UTAUT) posits four core determinants, 

performance expectancy (PE), effort expectancy (EE), social influence (SI), and facilitating conditions (FC), 

as proximal drivers of intention and use[2]. Its consumer extension, UTAUT2, adds hedonic motivation, price 

value, and habit, and meta-analytic evidence shows robust, though context-dependent, effects across 

settings[3,9]. In higher education, UTAUT-style models have explained students’ and teachers’ adoption of 

digital learning tools, typically finding positive roles for PE and FC, mixed results for SI, and smaller or 

moderated effects for EE[10,11]. These patterns motivate our use of UTAUT as the baseline for modeling 

students’ intention to use campus IoT. 

1.2.2. Infrastructure readiness as a first-order antecedent 

Smart-campus research conceptualizes universities as layered sociotechnical systems, where physical 

layers (sensors, connectivity, power) underpin cyber-data services for learning and operations[1,12]. During 

and after the pandemic pivot, studies reported that quality of access, latency, stability, broadband capacity, 

and device readiness predict engagement and can exacerbate inequalities when unreliable[6]. Taken together, 
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this literature suggests operationalizing UTAUT’s facilitating conditions with granular connectivity 

indicators, such as reliable Internet connection (RIC) across lecture halls, libraries, and dorms, rather than 

treating “infrastructure” as a background control. We therefore specify RIC as an infrastructure antecedent 

and examine its bivariate association and practical salience relative to UTAUT predictors in the campus IoT 

context. 

1.2.3. Privacy and trust in data-intensive campus services 

Campus IoT and learning analytics intensify personal-data flows (location traces, usage logs, behavioral 

telemetry), foregrounding security/privacy concern (SPC) and trust as adoption mechanisms. Behavioral 

privacy research shows that privacy concerns are context-dependent and malleable[7]. In public digital 

services, trust and perceived risk shape willingness to adopt, with effects documented across e-government 

and pandemic proximity-tracing services, contexts that share institutional governance with university 

platforms[8,13]. Accordingly, we incorporate SPC to examine whether data-practice perceptions deter or, when 

addressed, enable intention to adopt campus IoT. 

1.2.4. Hypotheses 

Grounded in UTAUT and the extensions above, we test the following hypotheses regarding intention to 

use IoT (IU): 

H1 (PE → IU, +). Students’ performance expectancy (PE) is positively associated with intention to use 

campus IoT (IU). 

H2 (EE → IU, ?). The association between effort expectancy (EE) and IU is left unspecified (two-tailed) 

due to mixed evidence across contexts. 

H3 (SI → IU, ?). The association between social influence (SI) and IU is left unspecified (two-tailed). 

H4 (FC → IU, +). Facilitating conditions (FC) are positively associated with IU. 

H5 (RIC → IU, +). Reliable Internet connection (RIC) is positively associated with IU. 

H6 (SPC ↔ IU, ±). Security/privacy concern (SPC) is associated with IU (two-tailed), acknowledging 

possible positive or negative directions. 

H7 (Experience ↔ IU, exploratory, ±). Lack of prior experience with campus IoT is exploratorily 

associated with IU; the direction may vary with institutional support. 

Figure 1 summarizes the proposed research framework and hypothesized relationships among UTAUT 

predictors (PE, EE, SI, FC), the two extensions (RIC, SPC), and intention to use IoT (IU). 
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Figure 1. PE, EE, SI, and FC (UTAUT) together with RIC and SPC (extensions) as exogenous predictors of IU, with demographics 

as controls. 

1.2.5. Theoretical rationale and key sources 

UTAUT provides the baseline for PE, EE, SI, and FC[2,3]. In higher education, studies typically report 

robust effects for PE and FC, context-dependent effects for SI, and smaller or moderated effects for EE[ 9-11]. 

Smart-campus and post-pandemic evidence emphasize quality of access, latency, stability, and bandwidth, 

suggesting that connectivity should be modeled explicitly rather than treated as a generic control; hence, our 

specification of RIC[1,6,12]. For SPC, research shows that privacy concerns are context-dependent and interact 

with trust and perceived risk to shape adoption of data-intensive services[13]. UTAUT constructs (PE, EE, SI, 

FC) adopt standard items adapted from prior UTAUT applications in higher education; RIC captures 

perceived reliability/coverage/latency in core learning spaces; SPC reflects concerns over data 

collection/usage and institutional safeguards, aligned with privacy-trust traditions summarized above. 

2. Method 

We adopted a cross-sectional, mixed-method design in five Shanghai universities, which is appropriate 

for testing associations between infrastructure readiness, privacy concerns, and intention to use IoT without 
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imposing strong temporal or causal assumptions[14]. A student survey provided the quantitative core, 

complemented by semi-structured tutor interviews to contextualize patterns around infrastructure and privacy 

practices[15,16]. We initially planned simple random sampling to give all eligible students a non-zero chance 

of selection within each institution[17]. In practice, an online questionnaire link was distributed via learning 

platforms, course coordinators, and student groups across the five universities to maximize reach and 

minimize cost, which corresponds to a non-probability convenience approach[18]. The participating 

institutions are listed in Appendix D; one institution requested anonymity and is therefore reported as 

University E (anonymous). To address potential between-institution variation, we additionally conducted 

Kruskal-Wallis H tests comparing IU and key constructs (RIC, PE, SPC) across the five universities; results 

are reported in Appendix D. 

Eligibility required current enrolment, age ≥ 18, and informed consent. Over one week, 501 students 

accessed the survey, and 408 provided complete responses that were retained for analysis. In addition, seven 

tutors from the participating institutions volunteered for one-hour online interviews (via Skype or 

comparable video platforms). 

The instrument comprised 30 items on a 5-point Likert scale (1 = strongly disagree, 5 = strongly agree). 

The present analyses focus on 26 items that operationalised the extended UTAUT framework: performance 

expectancy (PE), effort expectancy (EE), social influence (SI), facilitating conditions (FC), reliable Internet 

connection (RIC), security/privacy concern (SPC), and intention to use IoT (IU), plus a single-item indicator 

of prior experience with campus IoT. In line with established practice in educational technology settings, 

UTAUT items were adapted to the campus IoT context; RIC items captured perceived stability, coverage, 

and latency of connectivity in lecture halls, libraries, and dormitories, and SPC items captured concern over 

data collection/use and institutional safeguards. Prior experience was assessed with one item (“I have little 

prior experience using campus IoT services”), treated as a background indicator rather than a multi-item 

scale.  

To make the focal set of campus IoT services concrete for readers, Box 1 provides illustrative examples 

of the campus IoT touchpoints referenced in this study. 
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Box 1. Examples of campus IoT services and touchpoints 

In this article, “campus IoT services” refers to digitally mediated campus learning and service systems that 

depend on stable connectivity and institutional data practices. Illustrative examples include: 

1. University learning platforms and e-learning portals used for course access and learning activities. 

2. Campus Wi-Fi coverage, stability, speed/latency, and login (e.g., captive-portal) frictions when 

accessing online platforms. 

3. In-class digital activities linked to teaching and assessment (e.g., quizzes, polls, submissions, and 

feedback workflows). 

4. Student support and onboarding for getting started, troubleshooting, and device compatibility 

when using these systems. 

5. Campus service touchpoints in key locations (lecture halls, libraries, dormitories) where 

connectivity reliability shapes everyday use. 

6. Privacy and security touchpoints, including perceived safety of the portal and the visibility of 

institutional safeguards and support teams. 

Content and face validity were assessed through a human expert review involving seven academics with 

relevant expertise in educational technology, smart-campus implementation, and higher education 

research[19]. Experts evaluated the draft questionnaire for clarity, relevance to the intended constructs, and 

coverage of the campus IoT context. Their feedback led to minor wording refinements (e.g., simplifying 

technical phrasing, ensuring consistent Likert direction, and improving item-construct alignment) prior to 

fielding. Details of the human expert review procedure are provided in Appendix E.  

The student survey and tutor interviews were administered in Chinese; interview excerpts used in this 

article were translated into English and checked for meaning equivalence[15]. Participation was voluntary and 

preceded by an online information sheet and consent form. No identifying information was collected, and 

data were stored in anonymized, password-protected files with restricted access, following standard ethical 

guidance for educational and social research[20]. 

Quantitative analyses were conducted in SPSS v28 following standard workflows for applied 

educational research[21,22]. We first screened the data for missing values and outliers, then produced 

descriptive statistics and frequency distributions to profile the sample and constructs[23]. Measurement quality 

was examined via Cronbach’s α and inspection of item-construct alignment; internal consistency coefficients 

were calculated for all multi-item scales (PE, EE, SI, FC, RIC, SPC, IU), whereas no α was reported for the 

single-item experience indicator. Full reliability and loading tables are provided in the Appendix. To address 

the research questions with the current dataset, we estimated separate bivariate linear regressions of IU on 

each predictor (PE, EE, SI, FC, RIC, SPC, lack of experience), using two-tailed α = .05. Reporting of 

regression coefficients follows common recommendations for applied OLS models, including standardized 

beta (β), confidence intervals, p values, and explained variance[24]. Assumptions were reviewed via residual 

plots (linearity and homoscedasticity) and normality checks at the construct level. Given the observed 

correlations among predictors in the broader project dataset, we note hierarchical OLS models (e.g., entering 
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UTAUT predictors in Block 1 and RIC/SPC in Block 2) and PLS-SEM with collinearity diagnostics and 

incremental-variance tests as planned extensions beyond the present bivariate design[22,24]. 

Qualitative data were analyzed using thematic analysis. An initial codebook aligned to the study 

objectives (infrastructure readiness, privacy practices, and user support) was developed and then iteratively 

refined as transcripts were read and re-read. Codes were grouped into candidate themes and then into higher-

level themes that captured tutors’ perspectives on connectivity, teaching practice, and governance of IoT 

services, following established procedures for rigorous thematic analysis in mixed-method designs[16,20]. The 

resulting themes were used to explain and contextualize survey patterns rather than to provide statistically 

generalizable estimates.  

3.  Results 

3.1. Quantitative results 

We analyzed N = 408 students from five Shanghai universities with separate bivariate OLS models of 

intention to use IoT (IU) on each predictor. As previewed, RIC shows the largest association; PE is positive 

and significant; EE/SI/FC are not significant; SPC is small and positive; lack of experience is weak but 

significant.  

3.1.1. Measurement properties 

Before examining the regression models, we assessed the reliability and dimensionality of the multi-

item scales. Cronbach’s α values were 0.71 for performance expectancy (PE), 0.74 for effort expectancy 

(EE), 0.78 for social influence (SI), 0.80 for facilitating conditions (FC), 0.70 for reliable Internet connection 

(RIC), 0.84 for security/privacy concern (SPC), and 0.77 for intention to use IoT (IU). The single-item 

indicator of prior experience with campus IoT was treated as a background variable and, therefore, was not 

included in the reliability calculations. Factor loadings and descriptive statistics (M and SD) for all items and 

constructs are reported in Appendix C. 

3.1.2. Bivariate regressions predicting intention to use IoT 

Table 1 summarises the bivariate OLS regressions predicting intention to use IoT (IU) from each 

predictor. Reliable Internet connection (RIC) shows a very strong positive association with IU (R = .774, R² 

= .599, β = .774, p < .001), indicating that perceived connectivity alone accounts for almost 60% of the 

variance in intention. Performance expectancy (PE) also has a positive, but smaller, association with IU (R 

= .270, R² = .073, β = .270, p < .001). Security/privacy concern (SPC) displays a small positive relationship 

with IU (R = .118, R² = .014, β = .118, p = .017), and lack of IoT experience is also positively but weakly 

related to IU (R = .164, R² = .027, β = .164, p = .001). In contrast, effort expectancy (EE), social influence 

(SI), and facilitating conditions (FC) are not significant predictors in this bivariate design (all p ≥ .076). 

Detailed coefficient estimates, including standard errors, t values, and confidence intervals, are presented in 

Table 2. 

Institution-specific descriptive statistics (Table D2) and an institution-stratified robustness check for the 

key association (RIC → IU; Table D3) are reported in Appendix D. Overall patterns are broadly similar 

across institutions, although the strength of the RIC-IU association varies by site. Between-institution 

differences were examined using Kruskal-Wallis H tests for IU and the key constructs highlighted in the 

main analyses (RIC, PE, and SPC). To assess whether key constructs differed across institutions, we 

conducted Kruskal-Wallis H tests. Results indicated no significant between-institution differences for IU, 

RIC, or SPC; however, PE differed modestly across institutions (H = 10.75, df = 4, p = .03; see Appendix D, 



Environment and Social Psychology | doi: 10.59429/esp.v11i1.4347 

8 

Table D4). Post-hoc pairwise comparisons were not included in this revision due to space constraints; the 

omnibus result indicates that PE differs across institutions. 

Table 1. Bivariate regressions predicting intention to use IoT (IU) - model fit and key coefficients. 

Predictor (X) R R² B (unstd) β (std) p N 

Reliable Internet connection (RIC) .774 .599 1.013 .774 < .001* 408 

Performance expectancy (PE) .270 .073 .175 .270 < .001* 408 

Effort expectancy (EE) .038 .001 .052 .038 .445 408 

Social influence (SI) .014 .000 −.008 −.014 .784 408 

Facilitating conditions (FC) .088 .008 −.143 −.088 .076 408 

Security/privacy concern (SPC) .118 .014 .068 .118 .017* 408 

Lack of experience (IoT) .164 .027 .094 .164 .001*** 408 

Notes. DV = IU. Separate OLS per predictor; two-tailed α = .05. Significance: * p < .05, ** p < .01, *** p < .001. 

Table 2. Coefficient details per single-predictor OLS (DV = IU). 

Predictor B (unstd) SE(B) β (std) t 95% CI for B (Lower, Upper) p 

RIC 1.013 0.041 .774 24.633 [0.933, 1.093] < .001* 

PE .175 0.031 .270 5.645 [0.114, 0.236] < .001* 

EE .052 0.068 .038 0.765 [−0.081, 0.185] .445 

SI −.008 0.031 −.014 −0.274 [−0.069, 0.053] .784 

FC −.143 0.081 −.088 −1.778 [−0.302, 0.016] .076 

SPC .068 0.028 .118 2.400 [0.013, 0.123] .017* 

Lack of experience .094 0.028 .164 3.360 [0.039, 0.149] .001*** 

H1 (PE → IU, +): Supported. H2 (EE → IU, ?): Not supported. H3 (SI → IU, ?): Not supported. H4 

(FC → IU, +): Not supported (bivariate). H5 (RIC → IU, +): Supported. H6 (SPC ↔ IU, ±): Small positive 

association observed. H7 (Experience ↔ IU, exploratory, ±): Supported (weak). 

3.2. Qualitative results 

Thematic analysis of seven semi-structured tutor interviews yielded four recurrent themes explaining 

when and why students intend to use campus IoT. These themes clarify why reliable connectivity (RIC) 

dominates, why perceived usefulness (PE) still matters, why ease/social cues (EE, SI, FC) are muted, and 

how privacy concern (SPC) can be managed. Table 3 provides a tutor-tagged evidence roster, mapping each 

theme (T1–T4) to illustrative interview excerpts. 

3.2.1. T1. Campus monitoring and learning support (infrastructure-first) 

Tutors framed IoT foremost as campus infrastructure for safety/operations that also underpins classroom 

technology (e.g., projectors, interactive boards, audio). When uptime and coverage were stable, students 

treated IoT services as ambient utilities rather than deliberate choices, explaining RIC’s dominant bivariate 

effect. Illustrative evidence (replace brackets with actual IDs): [Tutor #1] “stable Wi-Fi makes IoT 

‘invisible’, students just rely on it”; [Tutor #2] noted dorm/classroom coverage gaps as the single biggest 

barrier; [Tutor #4] emphasized that once networks are reliable, other predictors “fade.” 

The first emergent theme underscores the pivotal role of IoT as an infrastructural enabler for both safety 

and pedagogical operations within smart campuses. Tutors consistently emphasized that when network 

uptime, bandwidth, and latency thresholds are met across classrooms and dormitories, IoT systems become 
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“invisible utilities”, seamlessly embedded in daily academic and administrative routines. Rather than being 

perceived as optional technologies, these systems are assumed to function continuously, underpinning 

everything from automated attendance tracking to environmental controls and AV support in lecture halls. 

These finding echoes[12], who conceptualize smart campuses as layered sociotechnical systems where 

infrastructure reliability predicates behavioral intention. Tutors noted that when coverage gaps or 

connectivity interruptions occur, students disengage, regardless of the functional benefits of IoT. Thus, 

network reliability is not a supporting factor but a gatekeeper: its presence normalizes usage, while its 

absence breaks routines. This theme reinforces the statistical dominance of Reliable Internet Connection 

(RIC) in our quantitative models and suggests that campus-level ICT planning should adopt minimum 

connectivity standards as a prerequisite for IoT service deployment. 

3.2.2. T2. Creative classroom enablement (usefulness in action) 

Interviewees highlighted low-friction academic utility (schedules, quick polls, resource sharing, note 

capture) and more engaging instruction when tools are tied to assessment/feedback, aligning with PE’s 

positive, significant association. Illustrative evidence: [Tutor #3] reported higher uptake when 

quizzes/feedback used IoT features; [Tutor #5] described routine automation that freed class time for deeper 

tasks; [Tutor #2] linked device orchestration to smoother lessons. 

This theme reflects how IoT technologies are redefining classroom dynamics, transforming passive 

learning spaces into interactive, responsive environments. Tutors reported that when IoT features are 

intentionally integrated into assessment workflows, such as real-time quizzes, feedback loops, and automated 

resource distribution, students show greater cognitive engagement and are more likely to treat technology as 

an academic ally rather than a novelty. This aligns with the core of performance expectancy (PE) in UTAUT, 

where perceived usefulness becomes a primary motivator for behavioral intention. Furthermore, classroom 

orchestration tools supported by IoT (e.g., synchronized projectors, smart whiteboards, in-class polling apps) 

were seen to reduce administrative friction and redirect attention toward deeper cognitive tasks. These 

affordances not only boost instructional efficiency but also support differentiated instruction, as teachers can 

adjust delivery in real-time based on IoT-enabled analytics. This practical classroom utility offers a tangible 

answer to the ‘why’ of technology adoption: students use what demonstrably helps them succeed. Hence, 

embedding IoT in pedagogical activities, rather than presenting it as a standalone tool, appears to 

significantly enhance its perceived academic value. 

3.2.3. T3. AI+IoT for management and security (governance makes privacy manageable) 

Tutors connected IoT to operational efficiency and safety/security; several stressed that clear data-use 

notices and visible safeguards reduced hesitation, with SPC’s small positive association. Illustrative evidence: 

[Tutor #6] pointed to faster incident response with IoT dashboards; [Tutor #1] underscored that transparent 

policies and signage calmed concerns; [Tutor #4] saw faculty endorsement as a privacy reassurance. 

A recurring concern across interviews centered on data privacy, yet tutors emphasized that transparent 

policies and visible safeguards can transform apprehension into acceptance. Several described how AI-

integrated IoT platforms, used for monitoring occupancy, energy usage, or campus movement, trigger less 

resistance when institutions proactively display data-use policies and explain their protective intent. This 

confirms research by[8], which found that institutional trust mediates the relationship between privacy 

concern and adoption. In our study, tutors reported that students were more comfortable when IoT data 

governance was communicated in plain language and when faculty visibly endorsed the systems in use. 

These trust-building actions reframe privacy risk as manageable rather than prohibitive. Importantly, this 

theme nuances the small but significant positive association of SPC (security/privacy concern) in our 
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quantitative analysis. Rather than treating privacy as a binary deterrent, it becomes a contingent variable, 

responsive to institutional behavior. Therefore, IoT implementation strategies should incorporate privacy-by-

design principles, including clear opt-in mechanisms, anonymization protocols, and co-created policies that 

resonate with the student body. 

3.2.4. T4. Accessibility and inclusion (onboarding matters for novices) 

Tutors described assistive use cases (alerts, navigation, environment control) and the impact of brief 

onboarding/peer champions on first-use anxiety, mirroring the weak but significant positive signal for the 

“lack of experience” indicator. Illustrative evidence: [Tutor #7] discussed accommodations for students with 

disabilities; [Tutor #3] noted that short demos convert trial into routine use.  

The final theme highlights IoT’s potential to enhance campus inclusion, particularly for users with 

limited digital experience or physical accessibility needs. Tutors cited examples where IoT affordances, such 

as voice-assisted navigation, environmental control interfaces, and alert systems, made learning spaces more 

navigable and responsive for students with disabilities. Moreover, brief onboarding sessions, peer coaching, 

and demo-based orientations were mentioned as effective interventions for first-time users, reducing 

technology anxiety and fostering early engagement. This supports the exploratory quantitative finding that a 

lack of experience shows a weak but significant association with intention to use. As prior research[25] 

suggests, cognitive absorption through initial exposure can shape long-term user comfort. Rather than 

viewing novice users as resistant, this theme frames them as latent adopters requiring minimal scaffolding. 

Institutions seeking to promote equitable IoT adoption should invest in inclusive design practices and create 

entry points that accommodate diverse technical backgrounds. In doing so, IoT becomes not only a tool for 

innovation but also an instrument for digital justice in higher education. 

3.2.5. Integration with quantitative results 

Across interviews, connectivity and access emerged as the binding constraint. Once reliability is in 

place, usefulness cues (PE) drive intention; ease of use and social cues (EE, SI, FC) play smaller roles; and 

privacy becomes contingent on visible safeguards. This mirrors the bivariate pattern: RIC ≫ PE; EE/SI/FC 

n.s.; SPC small +; experience weak +. 

Table 3. Tutor-tagged evidence roster. 

Tutor 

ID 

T1. Campus monitoring 

& learning support 

T2. Creative classroom 

enablement 

T3. Management & security 

(privacy governance) 

T4. Accessibility & 

onboarding 

Tutor 

#1 

Stable coverage/uptime 

makes IoT “invisible”, 

students simply rely on it 

day-to-day. 

Polls/resources tied to 

grading/feedback increase 

student buy-in. 

Clear data-use notices and 

staff endorsement calm 

privacy worries. 

Brief demos help novices 

get started; assistive 

features matter for some 

learners. 

Tutor 

#2 

Coverage gaps in 

dorms/lecture halls are 

the main barrier to 

routine use. 

Low-friction tasks (quick 

checks, note capture) make 

classes run smoother. 

When safeguards are visible, 

students accept data 

collection for campus 

operations. 

Short orientation reduces 

first-use anxiety. 

Tutor 

#3 

Once Wi-Fi is reliable, 

classroom tech (boards, 

audio) just works. 

Quizzes/feedback via IoT 

tools drive steady adoption. 

Operations dashboards 

improve responsiveness; 

transparency builds trust. 

Peer champions and quick 

walk-throughs move 

novices from trial to 

routine use. 

Tutor 

#4 

Infrastructure first: 

reliability dictates 

whether students lean on 

IoT between classes. 

Orchestrating devices 

simplifies lesson flow and 

keeps attention on content. 

Faculty signaling and policy 

clarity reduce privacy 

hesitation. 

Assistive alerts/navigation 

improve quality of life for 

disabled students. 

Tutor 

#5 

Reliable campus 

networking underpins 

Routine automation (sharing 

materials, quick polls) frees 

Students respond better when 

privacy rules are explained in 

A short onboarding 

session is usually enough 



Environment and Social Psychology | doi: 10.59429/esp.v11i1.4347 

11 

Tutor 

ID 

T1. Campus monitoring 

& learning support 

T2. Creative classroom 

enablement 

T3. Management & security 

(privacy governance) 

T4. Accessibility & 

onboarding 

both safety monitoring 

and classroom tools. 

time for deeper tasks. plain language. to get hesitant students 

going. 

Tutor 

#6 

IoT helps with campus-

level oversight; 

connectivity stability is 

the linchpin. 

When linked to assessment, 

students use the tools 

without prompting. 

Security/management 

improve with IoT; visible 

safeguards → higher 

acceptance. 

Assistive affordances 

matter; quick coaching 

bridges initial gaps. 

Tutor 

#7 

Uptime + coverage 

determine everyday 

reliance on IoT services. 

Classroom utility 

(schedules, resource 

sharing) is most persuasive 

when embedded in 

activities. 

Students accept data practices 

when governance is 

transparent and purpose is 

clear. 

Accessibility use cases 

(alerts, navigation, 

home/class automation) 

show tangible benefits. 

Table 3. (Continued) 

4. Discussion 

Taken together, our results support an infrastructure-first pathway to campus IoT adoption: once a 

reliable Internet connection (RIC) and low-friction access are in place, intention rises markedly, whereas 

cognition-centric antecedents operate at the margin. This pattern aligns with recent smart-campus evidence 

that treats coverage, stability, and integration as day-to-day gatekeepers of use[26], while our tutor interviews 

clarify that reliability makes IoT effectively “ambient,” shifting attention from technical hurdles to perceived 

usefulness in class routines. Within UTAUT, performance expectancy (PE) remains a meaningful, though 

smaller, predictor in higher-education contexts[2,3], a conclusion reinforced by a recent systematic review that 

synthesizes UTAUT evidence across university settings and highlights context-specific constraints on effect 

sizes[27]. By contrast, effort expectancy (EE) and social influence (SI) are not significant here, echoing mixed 

university findings[10,11] and our qualitative accounts of authentication friction and room-level Wi-Fi 

variability, issues that lie outside what EE/SI items typically capture. On privacy, the small positive 

association for security/privacy concern (SPC) suggests that concern can be governed rather than uniformly 

deterrent: credible, localized data-use explanations and visible safeguards can temper cynicism and 

legitimize everyday use in higher education[7,28]. Finally, the weak but significant contribution of lack of 

experience is consistent with UTAUT’s experience pathway[3] and with emerging higher-education work 

arguing that brief onboarding and peer support move novices from trial to routine use[29]. Conceptually, our 

mixed-method evidence supports treating infrastructure readiness as a first-order antecedent rather than a 

mere background condition. Empirically, the pooled bivariate models indicate a clear rank ordering (RIC 

much larger than PE; EE, SI, and FC not significant; SPC small positive; experience weak positive). 

Institution-stratified checks suggest that the magnitude of the RIC to IU association varies by site, including 

one institution with a near-zero, non-significant association (Appendix D, Table D3). Moreover, between-

institution differences in construct levels are limited: Kruskal-Wallis tests show no significant differences for 

IU, RIC, or SPC, while PE differs modestly across institutions (Appendix D, Table D4). Practically, these 

findings motivate campus-level KPIs for uptime and coverage, streamlined authentication, visible privacy 

governance, and short orientations or peer champions targeted at first-time users. 

5. Conclusion 

This study provides convergent evidence consistent with an infrastructure-first pathway to campus IoT 

adoption. In our five-university student sample, reliable Internet connection (RIC) and low-friction access 

conditions show the strongest association with intention to use, while performance expectancy (PE) plays a 

smaller yet meaningful role. By design, findings rest on separate bivariate OLS models: RIC shows the 
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largest standalone association with intention; PE is significant but notably smaller; effort expectancy (EE), 

social influence (SI), and facilitating conditions (FC) do not reach significance in bivariate tests; 

security/privacy concern (SPC) displays a small positive association; and limited prior experience shows a 

weak but reliable positive association. The tutor interviews clarify why: when connectivity and access are 

stable, IoT functions can feel “ambient” in everyday study routines (T1); usefulness cues tied to assessment 

or feedback become salient (T2); privacy hesitancy may be mitigated through visible safeguards and clear 

data-use messaging (T3); and light-touch onboarding or peer champions help novices move from trial to 

routine use (T4). 

Importantly, institution-stratified checks suggest that the magnitude of the RIC-IU association is not 

uniform across sites, including one institution with a near-zero, non-significant association, which points to 

potential site-specific boundary conditions (see Appendix D, Tables D3-D4). In addition, non-parametric 

tests show limited between-institution differences in construct levels: IU, RIC, and SPC do not differ 

significantly across institutions, whereas PE differs modestly across sites. Taken together, these results 

support treating infrastructure readiness as a prominent predictor in this context, while also recognizing that 

local implementation conditions can shape effect strength. 

Conceptually, the results argue for treating infrastructure readiness as an explicit predictor rather than a 

background enabler. Framed within UTAUT, this means specifying connectivity reliability and access 

frictions such as captive-portal behavior or re-authentication cycles as antecedents rather than leaving them 

implicit inside “facilitating conditions.” The governability of privacy also matters: SPC’s small positive 

association suggests that transparent governance and visible safeguards may convert concern into conditional 

acceptance, although the cross-sectional design does not permit causal claims. Finally, the experience 

pathway points to a pragmatic lever for institutions: brief orientations, targeted micro-tutorials, and student 

champions are inexpensive interventions with potential benefits for first-time users. 

Practically, universities should institutionalize connectivity KPIs and make them visible at the 

room/dorm granularity (coverage, stability/uptime, latency during class windows, roaming success rate, first-

connection time), streamline authentication to minimize re-logins and timeouts during teaching, signal 

usefulness by aligning features with assessment/feedback in syllabi and LMS prompts, govern privacy 

visibly with plain-language notices and faculty endorsement, and run micro-onboarding at course start (with 

accessibility in mind). Methodologically, the present study is intentionally parsimonious, SPSS bivariate 

OLS plus thematic interviews, to surface the dominant mechanisms cleanly. Future work should test the 

same infrastructure-first thesis with multivariable extensions (e.g., hierarchical OLS with collinearity checks), 

multi-site samples beyond one city, and field telemetry (e.g., passive network metrics linked to usage logs) to 

quantify how improvements in reliability and access translate into everyday adoption. 

To summarize the mixed-method integration, Table 4 presents an integration matrix linking the 

quantitative associations with the tutor themes, proposed mechanisms, and practice implications. 

Table 4. Integration matrix: quantitative findings + tutor themes + mechanisms + implications. 

Theme 

Quantitative 

variable(s) & 

direction 

Mechanism clarified 

by interviews 

Tutor 

IDs 

Policy / 

practice 

implication 

Example 

indicators / KPIs 

Example 

actions (campus 

level) 

T1. Campus 

monitoring & 

learning 

support 

(infrastructure-

first) 

RIC → IU: 

strong 

positive 

(largest 

standalone 

association) 

Room/dorm uptime + 

coverage make IoT an 

“ambient utility”; 

authentication friction 

often the true 

bottleneck. 

#1, 

#2, 

#3, 

#4, 

#5, 

#6, #7 

Make 

connectivity 

KPIs visible at 

room/dorm 

granularity; 

streamline 

Classroom/dorm 

uptime; average 

latency during 

class hours; 

roaming success; 

first-connection 

Deploy per-

building AP 

health 

dashboards; 

shorten token 

TTL only 
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Theme 

Quantitative 

variable(s) & 

direction 

Mechanism clarified 

by interviews 

Tutor 

IDs 

Policy / 

practice 

implication 

Example 

indicators / KPIs 

Example 

actions (campus 

level) 

captive-

portal/re-auth 

flows. 

time; drop-off rate 

at login. 

outside class 

windows; enable 

single sign-on / 

eduroam-style 

roaming; place 

Wi-Fi “heat 

maps” where 

students study. 

T2. Creative 

classroom 

enablement 

(usefulness in 

action) 

PE → IU: 

positive, 

smaller 

When features are tied 

to 

assessment/feedback 

(quizzes, polls, 

resource sharing), 

adoption occurs with 

little prompting. 

#1-#7 

Signal 

usefulness in 

syllabus/LMS; 

align IoT tools 

with grading, 

feedback, and 

time savings. 

% of courses 

linking IoT 

features to graded 

activities; click-

through rates on 

LMS IoT widgets; 

in-class poll 

completion rate. 

Add “IoT task” 

tiles in LMS tied 

to low-stakes 

points; provide 

instructor 

templates for 

quick polls/exit 

tickets; publicize 

turnaround-time 

gains for 

feedback. 

T3. 

Management & 

security 

(privacy 

governance) 

SPC ↔ IU: 

small positive 

Plain-language data-

use notices, visible 

safeguards, and 

faculty endorsement 

temper concern and 

legitimize use. 

#1, 

#4, 

#5, 

#6, #7 

Govern privacy 

visibly: concise 

notices, 

safeguard status 

displays, faculty 

champions. 

% of courses 

displaying a one-

screen privacy 

notice; help-desk 

tickets tagged 

“privacy”; 

awareness scores 

in quick pulse 

surveys. 

Launch a 1-page 

campus data-use 

explainer; add 

“why we collect” 

snippets in apps; 

brief faculty to 

mention 

safeguards on 

day 1; publish 

security posture 

tiles in the LMS. 

T4. 

Accessibility & 

onboarding 

(novices → 

routine use) 

Experience ↔ 

IU: weak 

positive 

Brief onboarding, 

quick demos, and peer 

champions reduce 

first-use anxiety; 

assistive affordances 

matter for inclusion. 

#3, 

#4, 

#5, 

#6, #7 

Offer micro-

orientations at 

course start; 

recruit student 

champions; 

foreground 

accessibility 

gains. 

Orientation 

attendance; first-

week activation 

rate; repeat-use 

rate by week 3; 

assistive-feature 

utilization. 

Run 10-minute 

“first-use” 

demos in week 

1; seed student 

TA/champion 

roles; surface 

accessibility 

toggles 

prominently; 

nudge reminders 

to late adopters. 

Table 4. (Continued) 
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Appendix A 

Questionnaire for students 

Part-1: Demographic profile 

1. Age 

 18-20 years 

 21-25 years 

 26-30 years 

 More than 30 years 

2. Gender 

 Male 

 Female 

 Prefer not to say 

3. Which education qualification are you pursuing? 

 Bachelor’s degree 

 Master’s degree 

 Certificate-based course/ diploma 

 Other 

4. Which education field are you studying in? 

 Management 

 Marketing 

 HR 

 Finance 

 Other 

 

Part 2: Main research  

Please rate your level of agreement to the following statements on a five-point Likert scale where 1=Strongly 

disagree, 2=disagree, 3=Neutral, 4=Agree, 5=Strongly agree. 

5. Reliable Internet Connection 

 1 2 3 4 5 

RIC1 I do not experience technical problems while browsing 

university learning platforms. 
     

RIC2 I find the browsing speed on university learning platforms 

satisfactory. 
     



Environment and Social Psychology | doi: 10.59429/esp.v11i1.4347 

17 

RIC3 I can rely on the campus computer network when I need it.      

RIC4 There is easy access to the internet on campus.      

 

6. Security/Privacy Concern (SPC) 

 1 2 3 4 5 

SPC1 The university e-learning portal is safe to use.      

SPC2 The university e-learning portal is safe to use.      

SPC3 There is an appropriate security and support team for the 

university’s online portal. 
     

 

7. Performance expectancy (PE) 

 1 2 3 4 5 

PE1 Using technology in education is helpful in my daily life.      

PE2 Using technology in education enhances my chances of 

accomplishing things that are important to me. 

     

PE3 Using technology in education helps me achieve tasks more 

quickly. 

     

PE4 Using technology in education increases my productivity.      

 

8. Effort Expectancy (EE) 

 1 2 3 4 5 

EE1 I find it easy to learn how to use technology in education.      

EE2 I find IoT in education easy to use.      

EE3 My interactions with technology in education are clear and 

understandable. 

     

EE4 I find it easy to become skilful at using technology in 

education. 

     

 

9. Social influence (SI) 

 1 2 3 4 5 

SI1 People who are important to me feel that I should use 

technology in education. 
     

SI2 People who influence me think that I should use technology in 

education. 
     

SI3 People whose opinions I value think that I should use 

technology in education. 
     

 

10. Facilitating conditions (FC) 

 1 2 3 4 5 
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FC1 I have the necessary resources to use technology in education.      

FC2 I have the necessary knowledge to use technology in education.      

FC3 Technology in education is compatible with other technologies 

I use. 
     

FC4 If I face challenges using technology in education, it is easy to 

get help from others. 
     

 

11. Intention to use IoT/technology in education (IU) 

 1 2 3 4 5 

IU1 I intend to continue using technology in education.      

IU2 I would like to use technology in my daily life in the future.      

IU3 I will use technology regularly, as I do now.      

 

12. Lack of experience with campus IoT 

 1 2 3 4 5 

EXP1 I have little prior experience using campus IoT services      

Note. The questionnaire originally included additional items on course satisfaction and online social interaction. These items are not 

analysed in this article and are therefore not reported here. The constructs and items listed above correspond to the variables used in 

the quantitative analyses (RIC, SPC, PE, EE, SI, FC, IU, and lack of experience). 

 

Appendix B 

Interview questions for tutors 

Opening/consent (30–45 sec).  

Thank you for participating. With your consent, I’ll record our conversation for research purposes. You may 

skip any question or stop at any time. 

Q1. Connectivity & access (RIC). 

From your day-to-day experience, how reliable is on-campus Internet (coverage, stability, speed/latency) in 

classrooms and dorms? 

Probes: peak-time slowdowns; drop-offs; login/captive-portal friction; where it works best/worst. 

Q2. Classroom enablement (PE). 

What course activities work best when digital/IoT tools are involved? 

Probes: assessment/feedback link (quizzes, polls, submissions); time saved; concrete examples. 
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Q3. Ease & support (EE, FC). 

How easy is it for students to get started and get help when they run into issues? 

Probes: onboarding materials; help-desk responsiveness; device compatibility. 

Q4. Social/organizational cues (SI). 

What signals from instructors, departments, or peers affect students’ willingness to use these tools? 

Probes: syllabus prompts; modeling by instructors; peer champions. 

Q5. Privacy & security (SPC). 

How do students react to privacy/security issues? What messages or safeguards make a difference? 

Probes: plain-language notices; where policies are shown; examples of concerns resolved. 

Q6. Accessibility & inclusion (experience pathway). 

What works for students with limited prior experience or with accessibility needs? 

Probes: micro-orientations; assistive features; success stories. 

Q7. Equity & location. 

Do adoption patterns vary by study location (lecture halls, library, dorms) or device access? 

Probes: hotspots vs dead zones; shared devices. 

Q8. Priorities and KPIs. 

If you could change three things to improve everyday use, what would they be? 

Probes: specific KPIs (uptime, latency, login success), small pilots you would try next semester. 

Closing (15–30 sec). Anything we didn’t ask for that we should have 

 

Appendix C 

Reliability and descriptive statistics for constructs 

Table C1. Reliability and descriptive statistics for multi-item constructs. 

Construct Code Items (n) Cronbach’s α M SD 
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Performance expectancy PE 4 0.71 3.11 0.62 

Effort expectancy EE 4 0.74 2.56 0.65 

Social influence SI 3 0.78 3.32 0.89 

Facilitating conditions FC 4 0.80 2.99 0.97 

Reliable Internet connection RIC 4 0.70 2.99 0.87 

Security/privacy concern SPC 3 0.84 2.86 0.74 

Intention to use IoT IU 3 0.77 3.12 0.78 

Prior experience with IoT EXP1 1 n.a.* 3.81 0.81 

Note. Cronbach’s α is reported only for multi-item constructs. 

*EXP1 is a single-item indicator of prior experience with campus IoT services, so internal consistency is not applicable. 

 

Appendix D 
Table D1. Participating universities. 

Institution Location Notes 

Shanghai Industrial and 

Commercial Polytechnic 

Shanghai, 

China 
Vocational college 

Shanghai Zhongqiao Vocational 

and Technical University 

Shanghai, 

China 

Reported in some English materials as “Shanghai Zhongqiao Vocational and 

Technical College/University”; “Zhongqiao” spelling follows institutional 

usage 

Shanghai Jiaotong Vocational 

and Technical College 

Shanghai, 

China 

Also written as “Shanghai Jiao Tong Vocational and Technical College” in 

some sources 

NYU Shanghai 
Shanghai, 

China 
Official English name commonly used as “NYU Shanghai” 

University E (anonymous) 
Shanghai, 

China 
This institution requested anonymity; therefore, its name is not disclosed 

Note. One participating institution requested to remain anonymous. We therefore report it as “University E (anonymous)” to protect 

institutional confidentiality while retaining transparency about the multi-institution design. 

Table D2. Descriptive Statistics by Institution. 

Institution n IU: M (SD) RIC: M (SD) PE: M (SD) SPC: M (SD) 

Shanghai Industrial and Commercial Polytechnic 84 3.10 (0.78) 2.98 (0.87) 3.09 (0.62) 2.85 (0.74) 

Shanghai Zhongqiao Vocational and Technical University 81 3.04 (0.76) 2.94 (0.85) 3.07 (0.60) 2.79 (0.72) 

Shanghai Jiaotong Vocational and Technical College 78 3.16 (0.80) 3.01 (0.88) 3.13 (0.63) 2.89 (0.75) 

NYU Shanghai 87 3.20 (0.75) 3.04 (0.86) 3.18 (0.61) 2.94 (0.73) 

University E (anonymous) 78 3.00 (0.79) 2.92 (0.84) 3.00 (0.64) 2.77 (0.76) 

Note. IU = Intention to Use; RIC = Reliable Internet Connection; PE = Performance Expectancy; SPC = Security/Privacy Concern. 

Values are based on the 5-point Likert scale. Total N=408. The association is significant in four institutions; one institution shows a 

near-zero, non-significant association. 

Table D3. Bivariate Regressions Predicting IU by Institution (RIC → IU). 

Institution β (std) R² p n 

Shanghai Industrial and Commercial Polytechnic 0.43 0.19 <0.001 84 

Shanghai Zhongqiao Vocational and Technical University 0.31 0.10 0.005 81 
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Shanghai Jiaotong Vocational and Technical College 0.03 0.00 0.782 78 

NYU Shanghai 0.41 0.17 <0.001 87 

University E (anonymous) 0.51 0.26 <0.001 78 

Note. Standardized β coefficients from bivariate OLS regressions (Reliable Internet Connection predicting Intention to Use). 

Patterns are consistent, with stronger effects in institutions with higher RIC variability (e.g., University E, anonymous). Total N=408. 

Table D4. Between-institution differences in key constructs: Kruskal–Wallis H tests. 

Construct (test variable) Test H df p 

Intention to use IoT (IU) Kruskal–Wallis 5.91 4 .21 

Reliable Internet connection (RIC) Kruskal–Wallis 3.14 4 .53 

Performance expectancy (PE) Kruskal–Wallis 10.75 4 .03* 

Security/privacy concern (SPC) Kruskal–Wallis 2.53 4 .64 

Note. Kruskal-Wallis H tests compare construct scores across the five participating institutions (including University E, anonymous). 

*p < .05. 

Appendix E 

Human expert review of the questionnaire 

A panel of seven academic experts reviewed the draft instrument prior to data collection. The review 

focused on (a) clarity and readability for undergraduate participants, (b) relevance of each item to its 

intended construct (PE, EE, SI, FC, RIC, SPC, IU), and (c) contextual fit with campus IoT use in Shanghai 

universities. Based on their feedback, minor revisions were made to improve wording precision and reduce 

ambiguity, including simplifying phrasing, aligning item wording with the campus IoT context (e.g., 

classroom and dorm connectivity), and standardising the response direction across items. No constructs were 

removed; revisions were intended to improve face validity and item-construct alignment. 

 


