

RESEARCH ARTICLE

Coping with assessment disruption: Business educators' psychological and ethical responses to generative AI

Shen Qinjie^{1,*}, Wynn Arunrugstichai²

¹ Graduate School, Bansomdejchaopraya Rajabhat University, Bangkok, 10600, Thailand

² Raffles International College Bangkok, Samut Prakan, 10540, Thailand

* Corresponding author: Shen Qinjie, shenqinjie001@gmail.com

ABSTRACT

As generative artificial intelligence (GenAI) transforms higher education, faculty face new psychological and ethical tensions in assessment. This qualitative study examines how business educators in Thailand perceive and respond to the disruption that GenAI has introduced into academic evaluations. Drawing on semi-structured interviews with ten university instructors, the study identifies four major themes: reliance on traditional methods to protect academic integrity, concern over the erosion of students' critical thinking, frustration with pedagogical inconsistency, and exploratory attempts at meaningful AI integration. These findings reveal that educators' responses are shaped not only by technological change but also by emotional strain, identity conflict, and ethically charged decisions around academic integrity, fairness, and responsible AI use within their institutions. The study contributes to social-psychological understandings of how faculty cope with educational transformation, highlighting the need for holistic institutional frameworks that address emotional readiness, ethical guidance, and pedagogical innovation in the age of AI.

Keywords: generative AI; assessment disruption; business educators; academic integrity; teacher identity; emotional labor; social psychology; higher education

1. Introduction

The proliferation of GenAI tools, such as ChatGPT, has rapidly transformed higher education, especially how student work is produced and assessed. While much of the existing discourse has focused on academic integrity and assessment strategy, the deeper psychological and social consequences for faculty remain underexplored. Faculty are also charged with maintaining educational standards and redesigning assessment practices amid rapid change. Educators now face competing demands. They must uphold academic rigor while embracing technological innovation, deter misuse while supporting authentic learning, and preserve professional identity in a rapidly evolving environment.

1.1. AI in education and assessment

Artificial intelligence is increasingly pervasive across educational contexts. Traditional AI applications (e.g., adaptive learning, automated grading) have already changed teaching practices^[1]. However, GenAI

ARTICLE INFO

Received: 14 November 2025 | Accepted: 19 December 2025 | Available online: 13 January 2026

CITATION

Shen QJ, Arunrugstichai W. Coping with assessment disruption: Business educators' psychological and ethical responses to generative AI. *Environment and Social Psychology* 2026; 11(1): 4348. doi: 10.59429/esp.v11i1.4348

COPYRIGHT

Copyright © 2026 by author(s). *Environment and Social Psychology* is published by Arts and Science Press Pte. Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>), permitting distribution and reproduction in any medium, provided the original work is cited.

marks a qualitative shift: its ability to produce fluent text, code, and multimedia means students can now outsource many assignments. Scholars note this “unprecedented” impact on higher education, prompting a re-examination of core pedagogical goals^[2]. A recent scoping review found that assessments should be redesigned to cultivate students’ self-regulated learning, academic integrity, and responsible autonomy in the GenAI era. The review recommends teacher professional development in AI literacy, stronger beliefs in human judgment in assessment, and institutional policy reforms to adapt to these AI-driven changes^[3]. These perspectives support a balanced view of AI in education, acknowledging both its transformative potential and ethical risks^[4]. Recent work has begun to document how university teachers themselves experience GenAI in their teaching, showing qualitatively different patterns ranging from cautious experimentation to deep reorganization of pedagogy^[5].

1.2. Academic integrity and traditional assessments

Concerns about academic integrity continue to drive debates over assessment redesign. Educators worry that easy access to GenAI tools may compromise the validity of students’ work^[6]. Similar concerns have been echoed in broader discussions of ChatGPT’s impact on assessment authenticity and trust^[7]. Many institutions have adopted “AI resistance” strategies, such as invigilated exams, handwritten essays, and device bans, to ensure authenticity. For example, faculty in medical schools have insisted that students know facts by heart, arguing that closed-book exams preserve rigor^[8]. Conversely, experts caution that an overemphasis on recall and high-stakes, closed-book exams can undermine higher-order learning^[9]. Such formats may privilege rote memorization at the expense of critical thinking and analytical skills.

1.3. Critical thinking and bloom’s taxonomy

A key concern among educators is that GenAI may weaken students’ critical thinking. Preliminary studies support this worry: Gonsalves^[10] found that GenAI use raised fears of dependence and potentially stifled inquiry and reflection. Since Bloom’s taxonomy underpins much curriculum design and was developed before the arrival of GenAI, it may no longer fully capture the complexity of learning in this context. Gonsalves^[10] argues that the taxonomy must be revised for the AI era, given that students can outsource lower-order tasks (remembering, understanding) to GenAI, allowing teachers to focus on higher-order skills (analysis, creation). In her exploratory study, some tasks aided by ChatGPT improved critical thinking (by prompting students to evaluate AI-generated answers), while others led to more superficial engagement (as students accepted easy answers).

1.4. Innovating assessment in the AI Era

A growing body of literature advocates redesigning assessment to align with digital realities. Instead of purely punitive responses, scholars suggest creative, student-centred approaches. For example, Baidoo-Anu and Ansah^[11] propose tasks that permit tool use (including AI) in low-stakes assignments, followed by a critical comparison of AI outputs to student reasoning. The World Economic Forum^[12] similarly recommends project-based and portfolio assessments, with drafts and reflections graded as much as final answers. In practice, some faculty experiment with using AI as a learning object, having students generate multiple solutions with GenAI tools and then determine which are valid^[3]. These strategies aim to position GenAI as a collaborator, not a shortcut. Studies in other regions similarly report a spectrum of responses to GenAI among university academics, combining enthusiasm about efficiency with anxiety over ethics and workload^[13].

1.5. Research gap and questions

While previous work has mapped the landscape of GenAI's impact on students, assessment formats, curriculum, and policy, relatively little attention has been paid to the psychological and social experiences of educators who must adapt in the face of technological disruption. How do educators feel about their evolving role? What coping strategies do they adopt? What institutional supports shape their attitudes and behaviours? This study investigates how business faculty members in Thailand experience and respond to the psychological, pedagogical, and ethical challenges posed by GenAI in student assessment. Drawing on semi-structured interviews with ten instructors, the study addresses the following questions:

1.5.1. Main RQ

How do business educators experience and respond to the psychological, pedagogical, and ethical challenges posed by GenAI in student assessment?

1.5.2. Sub-RQs

1. What emotional and cognitive responses do faculty report in adapting to AI-mediated assessment environments?
2. How do educators negotiate role identity, control, and academic values when redesigning assessment practices?
3. What specific strategies, defensive or integrative, do instructors employ to manage perceived threats from AI tools?
4. How do institutional norms and support structures influence faculty attitudes and adaptations?

1.6. Psychological and ethical framing

This study approaches business educators' responses to GenAI as a form of coping with rapid environmental change in their working context. Classic stress-and-coping perspectives conceptualize coping as the cognitive and emotional processes through which individuals appraise threats, mobilize resources, and select strategies to manage demanding situations^[14,15]. In our case, the key "stressor" is the sudden disruption of assessment practices by GenAI tools, combined with uncertainty about institutional rules and student behavior. Faculty must interpret this disruption, regulate their own emotions, and decide how to act in their everyday teaching.

We also build on work on teacher emotion and identity, which emphasizes that educators' actions are shaped by their professional values, beliefs about good teaching, and perceived professional agency within institutional structures^[16,17]. When these values clash with perceived demands (for example, reverting to closed-book, handwritten exams that feel pedagogically "backward"), teachers may experience tension, frustration, or moral unease.

In this study, we therefore treat psychological responses as educators' emotional experiences, cognitive appraisals, and identity negotiations in the face of GenAI-mediated assessment change. We use ethical responses to refer specifically to how faculty think and act regarding academic integrity, fairness, and responsible AI use when designing and policing assessments. Taken together, we position this study at the intersection of educational technology and social psychology, examining how an evolving technological environment (GenAI) and institutional assessment norms shape educators' coping, professional identities, and assessment practices in real-world settings, in line with *Environment and Social Psychology*'s focus on the interplay between environmental conditions and social-psychological processes.

2. Methodology

2.1. Research design

This study adopted a qualitative research design using semi-structured interviews to investigate how business faculty experience and respond to the challenges posed by GenAI in student assessment. The focus was on eliciting educators' perspectives, emotions, coping strategies, and sensemaking processes in the context of technological disruption. Semi-structured interviews were chosen to allow participants to elaborate on their beliefs and practices while maintaining thematic focus^[18]. The interview guide was developed based on the research questions and informed by existing literature on AI and academic integrity. All procedures adhered to ethical guidelines, including informed consent, confidentiality, and secure data handling. Although the institution did not require formal IRB approval for interview studies of this type, all procedures complied with the university's human research ethics guidelines, including informed consent and confidentiality protections.

2.2. Participants

Participants were ten faculty members teaching in Bachelor of Business Administration (BBA) programs at two institutions in Thailand: Raffles International College, Bangkok, and Siam University. Both are private higher education institutions in Bangkok. Five participants were recruited from each institution based on nominations by department heads, with selection criteria focusing on instructors actively involved in assessment design. All participants taught core business subjects such as marketing, accounting, human resource management, and finance. Teaching experience ranged from 2 to 15 years. Interviews were completed in May 2024, and transcription and analysis were completed by October 2024. Because all participants were taught in English-medium international programs, all interviews were conducted fully in English. To ensure anonymity, pseudonymous identifiers (P1-P10) were assigned. **Tables 1** and **2** provide demographic details of the participants.

Table 1. Participant details - Raffles International College, Bangkok.

Participant	Teaching Subjects	Teaching Experience (years)
P1	Marketing Management	12
P2	Finance & Accounting	4
P3	Organizational Behavior	10
P4	Business Law	6
P5	Information Systems & IT	2

Table 2. Participant details - Siam University.

Participant	Teaching Subjects	Teaching Experience (years)
P6	Human Resource Management	15
P7	Corporate Finance	9
P8	Entrepreneurship & Strategy	3
P9	Economics	11
P10	Operations Management	7

2.3. Data collection and analysis

2.3.1. Data collection

Data were collected through semi-structured interviews with ten business faculty members teaching in Bachelor of Business Administration (BBA) programmes at two Thai private higher education institutions. Participants were recruited via invitation emails circulated through programme coordinators, and those who expressed interest received an information sheet and consent form. Participation was voluntary, with no monetary incentives.

The interview protocol was developed based on recent literature on GenAI, academic integrity, and assessment in higher education^[19], as well as the researchers' own teaching experience. An initial set of questions was drafted to probe participants' experiences with GenAI in student assessment, perceived opportunities and risks, and the coping strategies they adopted. The guide was refined after two pilot interviews with instructors who were not part of the final sample, which helped to clarify question wording and sequencing.

Interviews were conducted face-to-face between March 2024 and May 2024 in English, according to participant preference. With participants' permission, all interviews were audio recorded and subsequently transcribed verbatim. Identifying information was removed during transcription, and pseudonyms were assigned to all participants.

2.3.2. Data analysis

Data were analysed using reflexive thematic analysis, following Braun and Clarke's six-phase approach. The first author first read all transcripts several times to become familiar with the data and noted preliminary analytic impressions. In the initial coding phase, the author generated line-by-line codes that captured participants' descriptions of how they responded to GenAI in assessment, including emotional reactions, practical strategies, and perceived constraints. Coding was conducted in MAXQDA 24, which facilitated systematic organisation and retrieval of codes.

In the next phase, related codes were grouped into candidate themes that reflected broader patterns of meaning across the interviews. These candidate themes were iteratively refined through constant comparison within and across cases. The author cycled between coded extracts, full transcripts, and the developing thematic map, revising theme boundaries, collapsing overlapping themes, and clarifying distinctions between them. Short analytic memos were used to document emerging interpretations and the researcher's reflexive considerations about their own position as a business educator working in the Thai context.

A provisional set of themes was then reviewed and discussed with the co-author. Discrepancies in interpretation were used to sharpen theme definitions rather than to calculate inter-coder agreement, in line with a reflexive approach to thematic analysis. Final themes were named to capture both participants' language and the analytic focus of each pattern.

Recruitment and analysis proceeded in parallel. After around eight interviews, no substantively new patterns were emerging, and the final two interviews largely reinforced existing themes. We therefore judged that pragmatic thematic saturation had been reached, consistent with prior work suggesting that many core themes in relatively homogeneous samples can be identified within 6 to 12 interviews^[20]. The four final themes presented in the Findings section represent an interpretive synthesis of these patterns, supported by illustrative quotations.

3. Results

3.1. Protecting integrity with traditional methods

All faculty reported implementing stricter controls to prevent AI misuse. The most common strategies were banning mobile devices during exams, enforcing in-class closed-book tests, and using handwritten assignments. For example, P3 (Raffles, 10 years, Organizational Behavior) explained: *"I started telling students to leave their phones outside exam rooms and go back to paper-and-pen exams. It sounds harsh, but we caught several ChatGPT essays last semester."* Similarly, P9 (Siam, 11 years, Economics) described proctoring every in-class quiz: *"We have no computers at final exams now. Even using a calculator is debated. The idea is: if they can't ChatGPT it, they have to think for themselves."*

Several participants noted going beyond exam security. P6 (Siam, 15 years, Human Resource Management) reported supervising even in-class assignments: *"Now I stand up, walk around the classroom every minute when we work on problems. No phones on the desk."* Faculty also discussed redesigning quizzes as oral or presentation tasks. P1 (Raffles, 12 years, Marketing Management) said: *"For some courses, I turned the final project into a student presentation. That way, they have to explain and defend their work, so it's harder to just parrot AI output."*

These measures reflect faculty prioritizing academic integrity over convenience. These preventive efforts mirror international findings on digital exam security, which stress the growing threat posed by unregulated AI access^[21].

P8 (Siam, 3 years, Entrepreneurship & Strategy) admitted it feels like a step backwards: *"Personally, I hate policing exams like this. But if I don't do it, students can easily hand in work from ChatGPT, and I wouldn't know."* Such quotes illustrate the predominant view: preventive control is the immediate response to AI. (This aligns with literature recommending complex, invigilated formats to make cheating harder.) However, as we discuss later, participants also expressed that these methods have drawbacks.

3.2. Concerns about critical thinking

A major theme was the belief that AI use could destroy students' critical thinking. Many faculty felt students were tempted to use ChatGPT for routine questions, missing out on developing problem-solving skills. For example, P7 (Siam, 9 years, Corporate Finance) stated bluntly: *"I think ChatGPT gives lazy students an excuse not to analyze stuff. They get an answer without understanding how to solve it."* Another participant, P4 (Raffles, 6 years, Business Law), remarked: *"Our goal is to teach them to think like businesspeople. If they just copy AI answers, where's the judgment? I see lower effort on critical parts."*

Some educators tied this concern to classroom habits. For instance, P10 (Siam, 7 years, Operations Management) noted: *"I had a student who said, 'I can just ask the AI for help.' That worries me. It's like outsourcing thinking. And then when I ban phones, they complain it's regressive."* Others worried about long-term skill deficits. P2 (Raffles, 4 years, Finance & Accounting) expressed: *"In accounting, mastering processes is key. If they rely on AI to do it, they won't retain knowledge for the exams or future jobs."*

Interestingly, a couple of participants saw a flip side: AI could *challenge* critical thinking if used properly. P5 (Raffles, 2 years, Information Systems & IT) admitted: *"If students know they have AI, maybe they push themselves harder to ask good questions. But I'm unsure if most will do that without guidance."* This reflects Gonsalves'^[10] observation that AI can both enhance and hinder critical thinking, depending on how tasks are framed. However, the overall sentiment here was caution: AI adoption is seen as a potential threat to student cognition unless assessment design changes.

3.3. Frustration with regressive assessment practices

Closely related to the above, many faculty expressed frustration or ambivalence about reverting to traditional exams. They described the measures as “*retrograde*” or “*anachronistic*.” P3 (Raffles, 10 years, Organizational Behavior) commented: “*It feels like going back to the 1980s. I'm telling kids not to use smartphones in school - I never thought I'd be so strict.*” P6 (Siam, 15 years, Human Resource Management) echoed: “*We have a generation of digital natives, and yet we force them to handwrite everything. It doesn't sit well with me pedagogically.*”

This sentiment was often juxtaposed with the need for integrity. P1 (**Raffles, 12 years**, Marketing Management) explained: “Yes, the closed-book exam is frustrating, but if a student can pass without knowing the material, isn't that worse? Still, it feels disconnected from modern business practices.” Some faculty pointed out the irony that they were teaching on laptops and projectors all semester, only to ban these tools at exam time. P7 (**Siam, 9 years**, Corporate Finance) said: “We use Google and Excel in class, but in tests it's just me and a pencil. It's contradictory to our learning objectives.”

3.4. Exploring meaningful AI integration

Despite concerns, a notable minority of faculty spoke optimistically about *embracing* AI tools in learning, seeing them as “another resource.” P8 (Siam, 3 years, Entrepreneurship & Strategy) enthusiastically shared: “*I'm actually designing an assignment where students must use ChatGPT to draft a business proposal and then critique its weaknesses. We discuss as a class where AI got it wrong.*” Similarly, P10 (Siam, 7 years, Operations Management) described a classroom experiment: “*I gave students a question and allowed them to use ChatGPT, but they had to submit both the AI answer and their own reasoning. Many students discovered the AI answer had errors, which sparked good discussions.*”

Some faculty want to shift assessments toward “AI plus human” tasks. P4 (**Raffles, 6 years, Business Law**) said: “For essays, maybe I'll ask students to explain how they used AI as a tool - what prompt they gave, how they checked it. We need transparency.” Others mentioned using AI to generate case studies or scenarios for class. P2 (**Raffles, 4 years, Finance & Accounting**) noted: “We used ChatGPT to simulate interview questions for HR. It's fun, and students see how the AI thinks.”

These ideas align with calls in the literature to make assessments *flexible* and AI-aware. However, participants also felt they needed support and training. P9 (**Siam, 11 years**, Economics) cautioned: “*I'm curious about AI use, but honestly, I don't know much about it myself. Without guidance on best practices, faculty are just guessing.*” This point echoed our coding: many expressed a desire for professional development on AI pedagogy, mirroring Xia et al.’s^[3] recommendation for teacher training in AI literacy.

3.5. Summary of all themes

Across these four themes, participants’ accounts revealed strong emotional and identity-related undercurrents. Faculty described stress, frustration, and moral unease when they felt compelled to “police” exams or revert to practices they experienced as pedagogically “backward.” At the same time, those experimenting with AI-inclusive assessment reported curiosity, cautious optimism, and a desire to maintain their identity as innovative, student-centred educators. These psychological and identity tensions cut across all four themes and are therefore discussed as cross-cutting dimensions rather than as a separate, standalone theme. These psychological and identity tensions cut across all four themes and are therefore discussed as cross-cutting dimensions rather than as a separate, standalone theme. To support transparency and transferability, **Table 3**

summarises the four themes, their core ideas, illustrative quotations from faculty interviews, and key implications for assessment design.

Table 3. Overview of themes and illustrative quotations from faculty interviews.

Theme	Core idea	Illustrative quotations (participants)	Assessment implications
1. Protecting integrity with traditional methods	Faculty tighten invigilation and revert to more controlled formats (closed-book exams, no devices, oral defences) to prevent GenAI-enabled cheating, even when this feels harsh.	P3 (Raffles, 10 years, Organizational Behavior): “I started telling students to leave their phones outside exam rooms and go back to paper-and-pencil exams. It sounds harsh, but we caught several ChatGPT essays last semester.” P9 (Siam, 11 years, Economics): “We have no computers at final exams now. Even using a calculator is debated. The idea is: if they can’t ChatGPT it, they have to think for themselves.” P6 (Siam, 15 years, Human Resource Management): “Now I stand up, walk around the classroom every minute when we work on problems. No phones on the desk.” P1 (Raffles, 12 years, Marketing Management): “For some courses, I turned the final project into a student presentation. That way, they have to explain and defend their work, so it’s harder to just parrot AI output.” P8 (Siam, 3 years, Entrepreneurship & Strategy): “Personally, I hate policing exams like this. But if I don’t do it, students can easily hand in work from ChatGPT, and I wouldn’t know.”	Emphasises security and control; may reduce opportunities for authentic, technology-rich assessment and increase monitoring burdens on instructors.
2. Concerns about critical thinking	GenAI is seen as encouraging shallow engagement and “shortcut thinking,” threatening students’ higher-order skills, retention, and professional judgement unless tasks are redesigned.	P7 (Siam, 9 years, Corporate Finance): “I think ChatGPT gives lazy students an excuse not to analyze stuff. They get an answer without understanding how to solve it.” P4 (Raffles, 6 years, Business Law): “Our goal is to teach them to think like businesspeople. If they just copy AI answers, where’s the judgment? I see lower effort on critical parts.” P10 (Siam, 7 years, Operations Management): “I had a student who said, ‘I can just ask the AI for help.’ That worries me. It’s like outsourcing thinking. And then when I ban phones, they complain it’s regressive.” P2 (Raffles, 4 years, Finance & Accounting): “In accounting, mastering processes is key. If they rely on AI to do it, they won’t retain knowledge for the exams or future jobs.” P5 (Raffles, 2 years, Information Systems & IT): “If students know they have AI, maybe they push themselves harder to ask good questions. But I’m unsure if most will do that without guidance.”	Positions GenAI as a potential threat to deep learning unless assessments explicitly demand explanation, justification, and independent reasoning around or beyond AI outputs.
3. Frustration with regressive assessment practices	Instructors experience tension between integrity-driven measures and their own beliefs about good pedagogy, often describing current responses as retrograde or anachronistic.	P3 (Raffles, 10 years, Organizational Behavior): “It feels like going back to the 1980s. I’m telling kids not to use smartphones in school - I never thought I’d be so strict.” P6 (Siam, 15 years, Human Resource Management): “We have a generation of digital natives, and yet we force them to handwrite everything. It doesn’t sit well with me pedagogically.” P1 (Raffles, 12	Highlights moral and professional discomfort: integrity measures can clash with contemporary business practice, digital skills, and constructive alignment, producing a sense of going “backwards.”

Theme	Core idea	Illustrative quotations (participants)	Assessment implications
4. Exploring meaningful AI integration	A minority experiment with “AI plus human” designs, treating GenAI as “another resource” and asking students to critique, compare, and transparently document their use of AI.	<p>years, Marketing Management: “Yes, the closed-book exam is frustrating, but if a student can pass without knowing the material, isn’t that worse? Still, it feels disconnected from modern business practices.”P7 (Siam, 9 years, Corporate Finance): “We use Google and Excel in class, but in tests it’s just me and a pencil. It’s contradictory to our learning objectives.”</p> <p>P8 (Siam, 3 years, Entrepreneurship & Strategy): “I’m actually designing an assignment where students must use ChatGPT to draft a business proposal and then critique its weaknesses. We discuss as a class where AI got it wrong.”P10 (Siam, 7 years, Operations Management): “I gave students a question and allowed them to use ChatGPT, but they had to submit both the AI answer and their own reasoning. Many students discovered the AI answer had errors, which sparked good discussions.”P4 (Raffles, 6 years, Business Law): “For essays, maybe I’ll ask students to explain how they used AI as a tool - what prompt they gave, how they checked it. We need transparency.”P2 (Raffles, 4 years, Finance & Accounting): “We used ChatGPT to simulate interview questions for HR. It’s fun, and students see how the AI thinks.”P9 (Siam, 11 years, Economics): “I’m curious about AI use, but honestly, I don’t know much about it myself. Without guidance on best practices, faculty are just guessing.”</p>	Points toward constructive, integrative approaches where GenAI becomes both a tool and object of critique, encouraging transparency, error-spotting, and professional simulations (e.g., HR interviews).

Table 3. (Continued)

4. Discussion

This study uncovered four key themes that characterize how Thai business faculty are responding to student use of GenAI in assessment. First, participants overwhelmingly described reverting to traditional, high-security assessment methods (e.g., invigilated, closed-book exams and bans on electronic devices) as immediate barriers to AI use. In effect, they viewed in-person exam conditions as “the easiest way to test knowledge” in the current environment. Second, faculty voiced deep concern that students’ reliance on AI for assignments undercuts the development of higher-order thinking. Many noted that if routine tasks are outsourced to ChatGPT, students may lack practice in analysis and evaluation. Third, instructors expressed frustration that these defensive strategies felt “backward-looking” and misaligned with modern learning needs. They were uneasy with a return to rote memorization, which they felt neglected critical, creative learning. Finally, some participants began to explore more constructive approaches: a few reported experimenting with assignments that explicitly incorporate AI (e.g., comparing student reasoning with AI outputs) or using AI as a tutor or drafting tool under supervision. In sum, while a default reaction was protective and regressive, there were early signs of adaptive, innovative thinking. These findings align with emerging discourse that educators’ attitudes toward AI span from resistance to adoption, reflecting an evolving landscape^[22].

4.1. Interpretation & Theoretical implications

The themes identified suggest several deeper dynamics. Educators' instinct to tighten controls reflects a natural defence of academic standards and their own role as gatekeepers of knowledge. This reaction may be seen as an assertion of traditional pedagogical identity: faculty felt responsible for certifying students' mastery of content and saw AI as a threat to that mandate. The tension between guarding integrity and fostering learning echoes theoretical discussions of teacher agency in turbulent contexts. As Zaimoğlu and Dağtaş^[22] note, teachers' interaction with new technologies is profoundly shaped by their pedagogical values and sense of professional agency. In our study, instructors seemed caught between their belief in student-centered, higher-order learning and a contrarian impulse to control information flow. This clash likely underlies their frustration; enforcing closed-book exams may protect exam validity^[23], but at the cost of sidelining critical learning objectives.

Concerns about critical thinking specifically find resonance in recent scholarship. Lubbe et al.^[25] argue that Bloom's taxonomy must be rethought for the AI era, elevating skills like evaluation and synthesis by providing appropriate scaffolds. The anxiety expressed by our participants suggests they sense this shift. They worry that if students routinely outsource "remembering" and "understanding" tasks to AI, then classes must pivot to truly value analysis and creation. This mirrors meta-analytic evidence that ChatGPT can only support higher-order thinking when paired with guided instructional frameworks. In other words, the threat to critical thinking may not be inherent in the tool, but in how educators frame its use. Our faculty's stance may reflect an implicit belief that without careful redesign, assessments mediated by AI could become shallow.

From a theoretical standpoint, this dynamic underscores a move from an instructivist to a constructivist paradigms. The closed-book exam strategy is rooted in a behaviorist/positivist view (knowledge = memorization), whereas integrating AI into projects hints at constructivist ideals (knowledge as generated and applied). The participants' discomfort signals that they are grappling with this epistemological shift. This tension reflects findings from Australia, where teachers expressed both uncertainty and cautious optimism regarding GenAI's classroom integration^[24]. Their experiences suggest that reconciling these worldviews requires updated learning theories. For example, Anchoring Bloom's taxonomy within a social-constructivist framework of AI-mediated learning^[25] may help explain why faculty long for "personal reflection" and creative tasks in assessments. The results also imply a need to extend technology acceptance models: educators' acceptance of AI may be conditioned by institutional values, perceived threats, and the extent of professional support available^[22].

Taken together, these patterns can be interpreted as coping responses to an abruptly altered assessment environment. Faculty appraised GenAI as both a threat (to integrity and critical thinking) and a potential resource, and adopted strategies that reduced anxiety and preserved a sense of professional agency, even when these strategies sometimes felt pedagogically suboptimal. This interpretation resonates with stress-and-coping models that view coping as appraising and managing demands in a changing environment^[14,15]. It also aligns with research showing that teachers' emotions, self-understanding, and vulnerability are central to how they enact their professional roles^[16,17].

4.2. Practical and pedagogical implications

These findings have clear implications for practice. First, institutions and instructors should avoid purely punitive measures and instead emphasize redesigning assessments. As Gimpel et al.^[23] recommend, educators can "critically rethink exams in light of GenAI," shifting toward task designs that require personal reflection, application to novel scenarios, or oral defenses. For example, exam questions might focus on

recent case studies not in an AI's training data, or require students to critique AI-generated answers. Our participants' desire for meaningful learning suggests leveraging AI as a tool: assignments could invite students to use ChatGPT for brainstorming or drafting, then justify or refine its output. This approach aligns with Lubbe et al.'s^[25] emphasis on embedding AI fluency in pedagogy. In practice, instructors might implement in-class AI labs where students experiment with prompts and discuss AI reliability, thereby directly targeting critical thinking.

Second, robust professional development is essential. Multiple sources note that faculty are eager for guidance. Our participants' uncertainty and desire for clearer guidance mirror Shata and Hartley's^[27] finding that faculty adoption of GenAI depends heavily on institutional communication and support structures. For instance, Kohnke and Ulla^[28] conclude that Thai instructors need ongoing training and support "to harness the potential of AI tools" while maintaining balance. Workshops could cover both the affordances of AI (creative content generation, automated feedback) and its pitfalls (bias, privacy issues). Training should be context-specific and iterative: participants in our study wanted concrete strategies, not abstract rules. Policy-wise, universities should develop clear guidelines on acceptable AI use. One practical step could be requiring students to declare their AI assistance in assignments, as advocated by Gimpel et al.^[23]. This transparency encourages responsible use and preserves academic integrity (analogous to requiring software citation). Instructional leaders might adopt AI-tool usage frameworks similar to those for plagiarism, making expectations explicit.

Third, curriculum and assessment policies must evolve. Echoing Kohnke and Ulla's^[27] recommendations, AI literacy should be built into the curriculum. For example, course outcomes might include "critically evaluating AI-generated solutions" or "integrating human judgment with AI resources." Teachers could design portfolio projects where students iteratively refine work with and without AI, reflecting on differences. Importantly, institutional culture should shift toward viewing AI as a learning partner. At the department level, educators might collaborate to create shared AI-informed assignment templates (e.g., case project prompts that allow tool use). Such collaborative design can distribute workload and model innovation.

Finally, pedagogy should embrace active, student-centered learning. Our findings suggest that tasks requiring synthesis and creativity - which AI cannot fully automate - will become increasingly valuable. Thus, instructors may move toward project-based learning, presentations, and portfolio assessments where evidence of original thought is clear. Pedagogically, this means focusing on skills like research design, argumentative writing, and in-class debates. At the same time, educators can harness AI for pedagogical benefit: for instance, using generative tools to provide instant feedback on drafts (under teacher supervision), or to differentiate learning by giving students customized tutoring chatbots. These positive uses can reframe AI from a "cheat sheet" to an educational ally - a shift that recent scholarship suggests is crucial for effective technology integration^[25,26].

4.3. Limitations

Several limitations of this study should be acknowledged. First, the sample was small and context-specific: only ten business faculty members from two institutions in Bangkok were interviewed. This limits generalisability, and attitudes in other disciplines, regions, or institutional types may differ. Second, participants were self-selected volunteers and were invited through department-head nomination, which may over-represent instructors who are perceived as more engaged with assessment practices or more responsive to institutional initiatives, introducing potential selection bias. Third, all data were self-reported and qualitative, so the findings reflect educators' perceptions rather than measured learning outcomes. Finally,

the GenAI assessment context is evolving rapidly (e.g., new tools, detection software, and shifting institutional policies), meaning participants' accounts capture a snapshot within an ongoing change process. Although interviews were conducted in English, interpretive bias remains possible during transcription, coding, and theme development. Despite these constraints, the study provides rich insights into educators' mindsets that can inform broader discussions and future investigations.

4.4. Suggestions for future research

Future research should build on these insights in several ways. First, larger and more diverse samples are needed. Studies could survey or interview faculty across multiple countries and disciplines to see how culture and field influence AI-related attitudes. It would also be valuable to include student perspectives in parallel – for example, exploring whether students share faculty concerns about critical thinking or how they perceive fairness in AI-aware assessments. Second, longitudinal research could track how attitudes and practices change over time as AI tools, familiarity, and policies develop. For instance, following a cohort of instructors through AI-focused professional development would show which approaches stick. Third, experimental and design-based studies could test specific interventions: comparing learning outcomes from AI-integrated assignments versus traditional ones would clarify the pedagogical impact. Researchers might also investigate the effectiveness of declaration forms or AI-detection software in real classrooms.

Additionally, theoretical work is needed. It would be fruitful to articulate and validate new models of teaching and assessment in the AI era, such as revised taxonomies or frameworks of teacher identity. For example, examining how constructivist versus positivist epistemologies predict faculty openness to AI could deepen understanding. Finally, given our participants' calls for guidance, action research or case studies documenting successful AI-infused courses in business education could provide practical exemplars. By addressing these gaps, future work can help educators move from apprehension to mastery of GenAI, ensuring that assessment evolves in step with technological change.

5. Conclusion & implementation

This study sheds light on how business educators navigate the emergence of GenAI in student assessment. Faculty responses exhibited a dual pattern. Many instructors defaulted to protective, traditional methods (e.g., closed-book, proctored exams and device bans) to deter AI use. This was driven by concerns that reliance on AI could undermine students' higher-order thinking. Yet alongside these regressive measures, nascent innovation emerged: some educators experimented with AI-inclusive tasks (for example, asking students to critique AI-generated answers). In effect, instructor attitudes ranged from resistance to tentative adoption, highlighting a broader shift in educational practice. These findings echo recent research that describes educators' reactions to AI as spanning from avoidance to exploration^[25].

5.1. Theoretical and pedagogical contributions

This research contributes to theory by highlighting how educators' reactions to AI reflect deeper pedagogical beliefs and identities. The default turn to strict exam conditions embodies an instructivist or behaviorist paradigm, treating knowledge as fixed and prioritizing recall. By contrast, the emergent use of AI tools aligns with constructivist ideals, where knowledge is co-constructed through inquiry and application. This tension underscores calls to revisit foundational learning frameworks: as Lubbe et al.^[25] argue, Bloom's taxonomy should be rethought for the AI era, elevating evaluation, synthesis, and reflection. More broadly, the study suggests that models of teacher technology acceptance must account for professional agency. Instructors' willingness to adopt AI depends not only on the tools' capabilities but also on alignment with their pedagogical values and the support they receive.

5.2. Practical and policy implications

The findings point to actionable strategies for educators and policymakers. Instructors should design assessments that harness AI as a learning partner rather than merely banning it. For example, educators might present students with AI-generated drafts or answers and require them to improve or critique these outputs, an approach that reframes AI as a collaborator. This strategy, consistent with Gimpel et al.^[23], assesses students' genuine understanding while preserving integrity. Robust professional development is also essential: teachers need training in AI literacy, pedagogical integration, and the ethical implications of AI use. At the policy level, institutions and accrediting bodies should establish clear guidelines for AI in education. For instance, universities might require students to disclose AI assistance in assignments and integrate AI competency and ethics into curriculum standards. Such measures can promote responsible AI use and maintain academic rigor.

5.3. Forward-looking reflection

Looking ahead, AI-integrated assessment and pedagogy will likely become more innovative, personalized, and collaborative. For instance, adaptive AI tutors could provide individualized feedback on student drafts, freeing educators to focus on guiding higher-order inquiry. Future assessments may routinely blend human and machine intelligence – for example, project-based portfolios could incorporate AI tools for ideation or simulation, followed by students' critical reflection on the AI's contributions. However, this evolution raises ethical considerations: educators and policymakers must ensure transparency about AI's role, guard against bias in AI outputs, and guarantee equitable access for all learners. Educational systems should anticipate these challenges by embedding ethics and accountability into their frameworks (such as AI ethics guidelines and updated curriculum standards). By proactively shaping policy and pedagogy, stakeholders can ensure that AI serves as an ally in education. Ultimately, with innovation grounded in ethical reflection, GenAI has the potential to enrich assessment and help cultivate the critical, creative thinkers needed for the 21st century.

Conflict of interest

The authors declare no conflict of interest.

References

1. Dimitriadou, E., & Lanitis, A. (2023). A critical evaluation, challenges, and future perspectives of using artificial intelligence and emerging technologies in smart classrooms. *Smart Learning Environments*, 10(1), 12. <https://doi.org/10.1186/s40561-023-00231-3>
2. Chiu, T. K. F., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. *Computers and Education: Artificial Intelligence*, 4, 100118. <https://doi.org/10.1016/j.caeari.2022.100118>
3. Xia, Q., Weng, X., Ouyang, F., Lin, T. J., & Chiu, T. K. (2024). A scoping review on how generative artificial intelligence transforms assessment in higher education. *International Journal of Educational Technology in Higher Education*, 21(1), 40. <https://doi.org/10.1186/s41239-024-00468-z>
4. Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., et al. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. *Learning and Individual Differences*, 103, 102274. <https://doi.org/10.1016/j.lindif.2023.102274>
5. Ellis, R., Han, F., & Cook, H. (2025). Qualitatively different teacher experiences of teaching with generative artificial intelligence. *International Journal of Educational Technology in Higher Education*, 22(1), 33. <https://doi.org/10.1186/s41239-025-00532-2>
6. Francis, N. J., Jones, S., & Smith, D. P. (2025). Generative AI in higher education: Balancing innovation and integrity. *British Journal of Biomedical Science*, 82, 14048. <https://doi.org/10.3389/bjbs.2024.14048>
7. Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. *Innovations in Education and Teaching International*, 61(2), 228–239. <https://doi.org/10.1080/14703297.2023.2190148>

8. Durning, S. J., Dong, T., Ratcliffe, T., Schuwirth, L., Artino, A. R., Boulet, J. R., & Eva, K. (2016). Comparing open-book and closed-book examinations: A systematic review. *Academic Medicine*, 91(4), 583–599. <https://doi.org/10.1097/ACM.0000000000000977>
9. Bengtsson, L. (2019). Take-Home Exams in Higher Education: A Systematic Review. *Education Sciences*, 9(4), 267. <https://doi.org/10.3390/educsci9040267>
10. Gonsalves, A. (2024). Educating for a post-ChatGPT world: Rethinking Bloom's taxonomy. *Journal of Educational Technology*, 12(1), 23–38. <https://doi.org/10.17925/jet.2024.12.1.23>
11. Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. *Journal of AI*, 7(1), 52–62. <https://doi.org/10.61969/jai.1337500>
12. World Economic Forum. (2023). The future of jobs report 2023. Retrieved from <https://www.weforum.org/publications/the-future-of-jobs-report-2023/>
13. Khlaif, Z. N., Alasali, A., Netshandama, V., Shamali, M., & Ayyoub, A. M. (2025). Against, avoid, adopt, explore: A spectrum of educators' responses to generative AI in higher education. *Education Sciences*, 15(1), 40. <https://doi.org/10.3390/educsci15010040>
14. Folkman, S., & Moskowitz, J. T. (2004). Coping: Pitfalls and promise. *Annual Review of Psychology*, 55, 745–774. <https://doi.org/10.1146/annurev.psych.55.090902.141456>
15. Skinner, E. A., Edge, K., Altman, J., & Sherwood, H. (2003). Searching for the structure of coping: A review and critique of category systems for classifying ways of coping. *Psychological Bulletin*, 129(2), 216–269. <https://doi.org/10.1037/0033-2909.129.2.216>
16. Kelchtermans, G. (2009). Who I am in how I teach is the message: Self-understanding, vulnerability and reflection. *Teachers and Teaching: Theory and Practice*, 15(2), 257–272. <https://doi.org/10.1080/13540600902875332>
17. Sutton, R. E., & Wheatley, K. F. (2003). Teachers' emotions and teaching: A review of the literature and directions for future research. *Educational Psychology Review*, 15(4), 327–358. <https://doi.org/10.1023/A:1026131715856>
18. Kvale, S., & Brinkmann, S. (2009). *Interviews: Learning the craft of qualitative research interviewing*. sage.
19. Chen, J., Xie, W., Xie, Q., Hu, A., Qiao, Y., Wan, R., & Liu, Y. (2025). A Systematic Review of User Attitudes Toward GenAI: Influencing Factors and Industry Perspectives. *Journal of Intelligence*, 13(7), 78. <https://doi.org/10.3390/jintelligence13070078>
20. Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. *Field Methods*, 18(1), 59–82. <https://doi.org/10.1177/1525822X05279903>
21. Susnjak, T., & McIntosh, T. R. (2024). ChatGPT: The end of online exam integrity? *Education Sciences*, 14(6), 656. <https://doi.org/10.3390/educsci14060656>
22. Zaimoğlu, S., & Dağtaş, A. (2025). Teacher cognition and practices in using generative AI tools to support student engagement in EFL higher education contexts. *Behavioral Sciences*, 15(9), 1202. <https://doi.org/10.3390/bs15091202>
23. Gimpel, H., Hall, K., Decker, S., Eymann, T., Gutheil, N., Lämmermann, L., Braig, N., Maedche, A., Röglinger, M., Ruiner, C., Schoch, M., Schoop, M., Urbach, N., & Vandirk, S. (2025). Using generative AI in higher education: A guide for instructors. *Journal of Information Systems Education*, 36(3), 237–256. <https://doi.org/10.62273/QLLG7172>
24. Wilkinson, C., Oppert, M., & Owen, M. (2024). Investigating academics' attitudes towards ChatGPT: A qualitative study. *Australasian Journal of Educational Technology*, 40(4), 104–119. <https://doi.org/10.14742/ajet.9456>
25. Lubbe, A., Marais, E., & Kruger, D. (2025). Cultivating independent thinkers: The triad of artificial intelligence, Bloom's taxonomy and critical thinking in assessment pedagogy. *Education and Information Technologies*, 30, 17589–17622. <https://doi.org/10.1007/s10639-025-13476-x>
26. Wang, J., & Fan, W. (2025). The effect of ChatGPT on students' learning performance, learning perception, and higher-order thinking: Insights from a meta-analysis. *Humanities and Social Sciences Communications*, 12, 621. <https://doi.org/10.1057/s41599-025-04787-y>
27. Shata, A., & Hartley, K. (2025). Artificial intelligence and communication technologies in academia: faculty perceptions and the adoption of generative AI. *International Journal of Educational Technology in Higher Education*, 22(1), 14. <https://doi.org/10.1186/s41239-025-00511-7>
28. Kohnke, L., & Ulla, M. B. (2024). Embracing generative artificial intelligence: The perspectives of English instructors in Thai higher education institutions. *Knowledge Management & E-Learning*, 16(4), 653–670. <https://doi.org/10.34105/j.kmel.2024.16.030>

Appendix A: Semi-Structured Interview Guide

This interview guide was used to explore how faculty members in business administration programs perceive and respond to the challenges posed by generative AI tools (e.g., ChatGPT) in the context of student assessment. The following open-ended questions were used to structure the interviews while allowing participants the flexibility to elaborate freely. Follow-up questions were asked as needed for clarification and depth.

1. Observations of AI Usage in Student Work

- Have you noticed any changes in how students use generative AI tools like ChatGPT in your courses?
- In what ways do you think these tools have influenced student learning behavior or performance?

2. Adaptations in Assessment Practices

- Have you made any changes to your assessment design (e.g., exams, assignments) in response to students' use of AI tools?
- What specific measures, if any, have you implemented to prevent inappropriate use of AI in assessments?
- How do you feel about reverting to traditional formats such as closed-book exams or handwritten assignments?

3. Concerns about Critical Thinking and Learning Outcomes

- Do you believe that the use of AI tools may undermine students' critical thinking or problem-solving abilities? Why or why not?
- Have you observed any differences in how deeply students engage with course material since the emergence of AI tools?

4. Perceptions of Teaching Identity and Professional Tensions

- Have these changes in assessment and AI use affected your views on teaching or your role as an educator?
- Do you experience any tension between maintaining academic integrity and encouraging meaningful learning?
- Approaches to AI Integration and Innovation
- Have you experimented with integrating AI tools into your teaching or assessments? What was the outcome?
- Ideally, how would you envision assessments evolving in the future with respect to AI?

6. Institutional Support and Needs

- Has your institution provided any training or guidance on how to address AI in teaching and assessment?
- What forms of support or resources would you find most helpful as you navigate this technological transition?