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ABSTRACT 

The influence of COVID-19 on educational processes has halted physical forms of teaching and learning and initiated 

online and mobile learning systems in most countries. The provision and usage of online and e-learning systems are 

becoming the main challenge for many universities during the COVID-19 pandemic. Due to the novelty of this situation, 

a substantial amount of research has been carried out to investigate the issue of m-learning adoption or acceptance. 

Nevertheless, little is known about studying to examine the continued use of m-learning, which is still in short supply and 

calls for further research. Five different theoretical models are integrated into this study to develop an integrated model 

that overcomes this limitation, including the technology acceptance model, the theory of planned behavior, the 

expectation-confirmation model, the Delone and McLean Information System Success Model, and the Unified Theory of 

Acceptance and Utilization of Technology 2. This conceptual framework shows novel relationships between variables by 

integrating trust, personal innovation, learning value, instructor quality, and course quality. Unlike extant literature, this 

study utilized a hybrid analysis methodology combining two-stage analysis using partial least squares structural equation 

modeling (PLS-SEM) and evolving artificial intelligence named deep learning (Artificial Neural Network [ANN]) on 250 

usable responses. The sensitivity analysis results revealed that attitude has the most considerable effect on the continued 

use of m-learning, with 100% normalized importance, followed by perceived usefulness (88%), satisfaction (77%), and 

habit (61%). This research reveals that a “deep ANN architecture” may determine the non-linear relationships between 

variables in the theoretical model. Further theoretical and practical implications are also discussed. 

Keywords: deep learning; non-linearity; artificial neural network; mobile learning; partial least squares-structural 

equation modeling 

1. Introduction 
Information and communication technology is a widely used technology today. A total of 4.1 billion 

people were online in 2019, representing 53.6% of the global population[1]. Smartphone penetration reached 
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66% in 2022[2]. Over the last two decades, the rapid adoption of mobile technologies has also led to a rise in 
internet usage. The higher penetration of mobile-based ICT has been critical to bridging society, integrating 
it, and allowing individuals to do their daily tasks remotely. 

The concept of mobile learning can be described as follows: “the learning process carried out through the 
use of mobile devices (m-devices)”. There have been several studies on e-learning adoption during the 
COVID-19 pandemic in higher education[3,4]. The paradigm of the education sector has been shifted by 
COVID-19. Many countries, such as Turkey, require remote education, including mobile learning, which 
carries many health risks. The effectiveness of mandatory m-learning programs is, however, not well 
understood. As a result, there is a need to investigate the aspects and mechanisms that influence students’ 
experiences. There have been considerable studies in the extant literature on adopting mobile learning[5]. 
Nonetheless, there is still a growing interest in research into the long-term utility setting of m-learning. 

The present study makes a major contribution in three ways: First, the significant effects of the 
antecedents and outcomes on continuing m-learning use represent a crucial contribution. Second, the current 
paper aims to create a novel hybrid model with the help of comprehensive constructs. In this regard, a 
conceptual model that incorporates the TAM, TPB, ECM, D & McLean IS success model, UTAUT2, etc. Trust 
(TRST) was added to our model since it is considered to be an essential need rather than a competitive 
advantage[6–9]. In the paper, UTAUT2 will be extended to include this major influence on technology adoption 
in mobile learning, contributing to the literature with a more holistic theoretical perspective. This paper 
proposes a revised version of UTAUT, which incorporates additional constructs such as price value, hedonic 
motivation, and habit to increase its explanatory power. The current work attempts to bridge a similar gap in 
the context of m-learning by adding variables such as course quality (CQ)[10], learning value (LV)[11], and 
instructor quality (INSQ)[10,12]. Personal innovativeness (PI) and social influence (SI) were added as additional 
constructs to address TAM’s psychological science shortcomings, which may be due to the absence of 
psychological science components in TAM. Third, earlier research on m-learning has used a single-stage 
analysis such as SEM analysis[13–16]. There is a widely used linear model known as SEM that is utilized in 
many studies only to study linear correlations and is not considered appropriate for predicting the complexities 
involved in complex decision-making. However, to eradicate such limitations, as a complement to linear 
models, the second phase of the investigation involved creating an ANN with one hidden layer[17,18]. A two-
phase analysis, comprised of one hidden layer, has been utilized to address this issue using machine learning 
approaches[19–27], which chose a single hidden layer, which a typical second stage ANN that is employed with 
a single hidden layer has been identified as a shallow architecture by Huang and Stokes[28]. Prior research 
topics that applied conventional shallow ANN approaches[29–31], it was recommended to use a deep learning 
dual-layer architecture[32–35]. Furthermore, the current study employs a deep learning technique that provides 
more insights than conventional ANNs[30,33,36,37]. Hence, by analyzing both linear and nonlinear compensatory 
associations through deep learning dual-stage approaches, this study fills an existing research gap. Because 
earlier m-learning research did not utilize the hybrid approach, adopting the deep learning dual-stage strategy 
in researching continuous intention in m-learning is regarded as a unique and novel way. The deep learning 
dual-stage approach’s originality has provided a significant shift in methodology in the existing literature on 
mobile learning. Figure 1 depicts the conceptual model. 
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Figure 1. Research model. 

2. Literature review 
There is a wide range of theories to assess users’ adoption of any new technology. Theory of Reasoned 

Action[38,39], Technology Acceptance model[40], Theory of Planned Behavior (TPB)[41] are among these 
theories. The theory of Reasoned Action (TRA), which was derived from social psychology[42], is the basis for 
many psychosocial theories, such as the Theory of Interpersonal Behavior (TIB), Theory of Planned Behavior 
(TPB), and Social Cognitive Theory (SCT). Diffusion of Innovation (DOI)[43], and Unified Theory of 
Acceptance and Use of Technology (UTAUT)[44]. A relatively more recent, comprehensive, and widely used 
model is the Unified Theory of Acceptance and Use of Technology (UTAUT) model. User adoption of 
technology can be explained by several theoretical frameworks, but the DeLone and McLean IS success 
model[45] is the most commonly used. 

A selection of studies has been conducted on student acceptance of mobile learning systems using Partial 
Least Squares Structural Equation Modelling (PLS-SEM) and Artificial Neural Networks (ANN) (Table 1). 
These only focused on hybrid studies for online learning. For instance, the study by Al-Adwan et al.[46] 
investigated factors predicting students’ intentions to use mobile learning using a framework based on the 
UTAUT. In their study, they found that effort expectations, trust expectations, performance expectations, 
system functionality, self-management, and social influence were significant determinants of m-learning 
adoption. In another study, the use of innovation diffusion theory (IDT) was used in another study by Park et 
al.[47] to investigate South Korean undergraduate students’ acceptance of m-learning. They found that students’ 
acceptance of m-learning was negatively influenced by their resistance to innovation, but positively influenced 
by compatibility, observability, relative advantage, and system quality. In another study, an examination of the 
effects of fear emotions on the adoption of technology by teachers and students during the COVID-19 
pandemic was conducted by Al-Hamad et al.[48]. Experiments revealed significant predictors for using mobile 
learning platforms, including perceived fear, perceived ease of use, expectation confirmation, satisfaction, and 
perceived usefulness. Recently, a study by Alzaidi and Shehawy[49] examined student intentions to use mobile 
learning during COVID-19 in different cultural contexts, using the Unified Theory of Acceptance and Use of 
Technology (UTAUT) and the Expectation-Confirmation Model (ECM). PE, SAT, SI, FC, and students’ 
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continued use of mobile learning are positively influenced by instructors’ competencies. Moreover, PE, EE, 
and SI were all found to be positive predictors of behavioral intention (BI) to use technology in the context of 
Zimbabwe[50]. In another study, in their study, Chahal and Rani[51] investigated the factors that affect how 
students perceive e-learning and how they use it in their daily lives. 
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Table 1. Relevant and recent studies about mobile learning adoption. 

Study Technique applied Area Number of 
hidden layers 

Constructs Context Sample 
size 

How was the number of 
hidden neurons determined? 

Network structure Activation function 
hidden layer 

Output layer 

Al Ghuwairi et al.[52] SEM-NN Mobile learning  EE, FC, PE, and SF Jordan 167 Automatically  9-1-1 Hyperbolic tangent  
Alhumaid et al.[26] SEM-NN Mobile learning  ATT, EC, PU, PEU, PBC, 

PF, SN, and INT 
United Arab 
Emirates 

280 Automatically 8-1-1 Sigmoid Sigmoid 

Yakubu et al.[23] SEM-NN Learning 
management 
systems 

3:2 INSQ, CQ LV, SI, FC, 
SYSQ, PU, PEU, BI, and 
AU 

Nigeria 1116 Automatically  5-3-2-1 
1-3-2-1 

Logistic function  Logistic 
function  

AlHamad[19] SEM-machine 
learning 

Mobile learning  PU, PEU, ATT, SN, PBC, 
and INT 

United Arab 
Emirates 

489 Automatically     

Shukla[25] SEM-NN M-learning 1 CN, AFN, PE, EE, SI, FC, 
BI, MLUB 

India 220 Automatically  5-1-1 Hyperbolic tangent Identity 

Al-Shihi et al.[53] NN Mobile learning  1 FLX, SL, EL, ENJL, SUL, 
and ECL 

Oman 388 Automatically  6-1-1 Hyperbolic tangent Identity 

Alshurideh et al.[20] SEM-machine 
learning 

M-learning systems  PU, PEU, EC, SAT, SI, CI, 
and AU 

United Arab 
Emirates 

448     

Thongsri et al.[22] SEM-NN Online learning  1 SDL, ML, OCE, LC, and BI Thailand 605 Automatically 4-1-1 Hyperbolic tangent Hyperbolic 
tangent 

Tan et al.[54] SEM-NN Mobile learning 1 PU, PEU, PIIT, SI, and BI Malaysia 214 Automatically 1-1-1 
2-1-1 
3-1-1 

Sigmoid Sigmoid 

Sharma et al.[55] SEM-NN E-learning 
management 
systems 

1 IQ, IU, PI, SERQ, SYSQ, 
and TE 

India 219 Automatically 5-1-1 Hyperbolic tangent  Identity 

Akour et al.[21] SEM-machine 
learning 

Mobile learning 
platforms 

 PU, PEU, PF, SN, ATT, 
PBC, and INT 

United Arab 
Emirates 

1880     

Songkram and 
Chootongchai[27] 

SEM-NN Education as a 
service 

2 PU, PEU, SERQ, SYSQ, 
and IQ 

Thailand 1570 Automatically  4-2-1 Sigmoid function  Sigmoid 
function  

Kumar et al.[24] Sem-Ramsey’s 
regression equation 
specification error 
test 

Mobile learning   PU, PEU, ATT, MSE, WU, 
SN, and BI 

Malaysia 171     

Elnagar et al.[56] SEM 
NN 

E-learning 2 POA, PU, PEU, PR,  
SE, EJ, and PC 

United Arab 
Emirates 

659 Automatically  7-2-1 Sigmoid function  Sigmoid 
function  

Zhang et al.[57] SEM  
NN 

Mobile learning  CON, AFN, SON, ENN, 
MLC, and PINT  

China 262     

Notes: TAM: Technology Acceptance Model; UTAUT: The Unified Theory of Acceptance and Use of Technology; SEM: Structural Equation Modelling; NN: Neural Network; ATT: Attitude; EC: 
Expectation Confirmation; PBC: Perceived Behavioral Control; PF: Perceived Fear; SN: Subjective Norm, INT: Intention to Use; SAT: Satisfaction; CI: Continuous Intention; CN: Cognitive Need; 
AFN: Affective Need; BI: Behavioral Intention; MLUB: M-Learning Use Behavior; EE: Effort Expectancy; PE: Performance Expectancy; SF: Social Factors; FC: Facilitating Conditions; FLX: 
Flexibility Learning; SL: Social Learning; EL: Efficiency Learning; ENJL: Enjoyment Learning; SUL: Suitability Learning, ECL: Economic Learning; IQ: Instructor Quality; CQ: Course Quality; LV: 
Learning Value, SI: Social Influence, SYSQ: System Quality, PU: Perceived Usefulness; PEU: Perceived Ease of Use; BI: Behavioral Intentions; AU: Actual Usage; MLC: Mobile Learning 
Continuance; PINT: Perceived Integration of Online-offline Learning; PIIT: Personal Innovativeness in Information Technology; POA: Post-Acceptance of e-learning technology; PR: Perceived 
Routine Use; SE: Self Efficiency, PC: Perceived Critical Mass; SDL: Self-Directed Learning, ML: Motivation for Learning; OCE: Online Communication Self-Efficacy; LC: Learner Control; SERQ: 
Service Quality; TE: Technology Experience; WU: WhatsApp Use; MSE: Mobile-Self Efficacy; SON: Social Need; ENN: Entertainment Need.
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As a result of a recent systematic literature review, psychological factors, and student beliefs have a 
substantial influence on the continued use of mobile learning systems. A model that integrates five different 
theoretical models is proposed in this study as a solution to this limitation. D&M IS Success Model, TAM, 
TPB, ECM, and UTAUT2 were integrated. This conceptual framework integrates trust, personal 
innovativeness, learning value, instructor quality, and course quality. 

2.1. Research model 

Five different theoretical models, namely TAM, TPB, ECM, D&M IS Success Model, and UTAUT2 
were integrated to develop the research model. Also, this conceptual framework integrated trust, personal 
innovativeness, learning value, instructor quality, and course quality. Both PU and PEU are considered to 
influence the intention to use mobile learning continuously. In the context of TPB, ATT, PBC, and SN have 
been found to significantly influence continual intention to use mobile learning. A significant correlation has 
been found between expectation confirmation in ECM and perceived usefulness and satisfaction, which in turn 
influence continuous intentions. Regarding the Delone and McLean IS success model (D&M IS Success 
Model), IQ, SYSQ, and SERQ have been proposed as factors that affect CI to use mobile learning. From the 
perspective of the UTAUT2, it has been proposed that performance expectancy (PE), effort expectancy (EE), 
social influence (SI), facilitating conditions (FC), hedonic motivation (HM), price value (PV), and habit (HB) 
has a significant impact on the continuous intention to use m-learning. Furthermore, trust, personal 
innovativeness, learning value, instructor quality, and course quality influence continuous intention to use 
mobile learning. A recent systematic review examined m-learning studies. The integration of TAM and ECM. 
In terms of acceptance of technology and post-adoption behavior, these two theories have been cited most 
often[58]. Furthermore, continuous intention is considered the key determinant of actual m-learning usage. 
Several additional factors and hypotheses are presented graphically in Figure 2, which were not explicitly 
presented in Figure 1. All these factors have been studied previously, but none have been presented in one 
paper before. 

 
Figure 2. IPMA for AU. 

3. Hypotheses development 
A review of the most recent literature will enable us to propose a set of hypotheses that address important 

variables in mobile learning, such as: ATT; CIU; CQ; EC; EE; FC; HBT; HM; INSQ; IQ; LV; PBC; PE; 
PEOU; PI; PU; PV; SA; SE; SEQ; SI; SN; SYSQ; TE, and TRST. Moreover, we propose the following 
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research model (see Figure 1), as a result of reviewing the previous literature described in the preceding 
sections. Students continued use of mobile learning after COVID 19 was the focus of the following hypotheses. 

3.1. Attitude (ATT) 

ATT refers to “one’s desirability to use the system”[59]. Previous m-learning studies pointed out that ATT 
has a significant association with CIU[60–62]. We, therefore, propose the following: 

H1: ATT positively and significantly influences on CIU. 

3.2. Continuous intention to use (CIU) 

CIU refers to “users’ intention to continue using the information system”[63]. It has been indicated in 
previous studies that CI has a direct and significant impact on actual use (AU)[64,65]. Therefore, the following 
hypothesis is suggested: 

H2: CIU positively and significantly influences on AU. 

3.3. Course quality (CQ) 

The output or information that can be received from the system in the form of reports is a significant 
indicator of its quality[45,66]. The quality of information obtained from an IS system is measured based on 
“dimensions such as accuracy, completeness, currency, efficiency, relevance, scope, and timeliness of 
information”[10]. Information quality refers to the quality of report contents and form that obtained from an IS 
system; its measurement includes “dimensions such as accuracy, completeness, currency, efficiency, 
relevance, scope and timeliness of information”[10,45,67]. 

H3: CQ positively and significantly influences on CIU.  

3.4. Expectation confirmation (EC) 

EC refers to “users’ perceptions of the congruence between the expectation of information system usage 
and its actual performance”[63]. It was revealed in prior m-learning research that there is a significant impact 
of EC on satisfaction (SA)[68]. Previous research also triggered out that there is a significant relationship 
between EC and the perceived usefulness (PU) of m-learning[69,70]. Hence, we hypothesize the following:  

H4: EC positively and significantly influences on PU. 

H5: EC positively and significantly influences on SAT. 

3.5. Effort expectancy (EE) 

EE is defined as “the degree of ease associated with the use of the system”[35,71]. A person assumes that 
the utilization of technology would be effortless[72]. Effort expectancy is similar to complexity, ease of use, 
and perceived ease of use[44]. Previous studies indicated that effort expectancy significantly influences 
behavioral intention[34,73,74]. Furthermore, this construct is considered an essential determinant of learning 
behavioral intention to use e-learning systems[35,75–79]. Hence in this study, it was hypothesized that:  

H6: positively and significantly influences on CIU. 

3.6. Facilitating conditions (FC) 

FC is defined as “the degree to which an individual believes that an organizational and technical 
infrastructure exists to support the use of the system”[44]. FC is provided external resources to facilitate the 
performance of a particular behavior[41]. UTAUT uses three items to capture the facilitating conditions: 
resources and knowledge, compatibility, and help[44]. Unlike some studies that found an insignificant influence 
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on students’ behavioral intention to use[17,80,81]. While some studies found significant relationship[23,82–84]. It 
was hypothesized that: 

H7: FC positively and significantly influences on CIU.  

3.7. Habit (HBT) 

HBT is defined as “the extent to which people tend to perform behaviors automatically because of 
learning accumulated from their experience in using certain technology”[71]. According to Venkatesh and 
Davis[85] habit has been recognized as “an alternative determinant of technology usage along with behavioral 
intention”. HB was found to affect BI toward using certain technology in IS research[86–89] and e-learning[90,91]. 
Therefore, the following hypothesis is postulated: 

H8: HBT positively and significantly influences on CIU. 

3.8. Hedonic motivation (HM) 

HM is defined as “the fun or pleasure derived from using a technology”[71]. The hedonic motivation was 
added by Venkatesh et al.[71] to their new model to capture the role of intrinsic utilities. Venkatesh et al.[71] 
mentioned that the critical influence of hedonic motivation comes from the novelty-seeking and innovativeness 
existing in using new systems. Theoretically, HM was found to be an influential factor predicting the intention 
toward the adoption of technology in IS research[34,71,78,87,91,92]. Hence, the following hypothesis is formulated: 

H9: HM positively and significantly influences on CIU.  

3.9. Instructor quality (INSQ) 

The key person’s attitude can affect the user’s behavior[93] Instructor quality (INSQ) dominates learners’ 
attitudes towards e-learning[94], and this phenomenon reveals that the instructor is the key person that is 
important to learners’ behaviors in the e-learning process. Learners’ perceptions regarding an eLearning 
system are influenced by the quality of the instructor[94]. The instructor “is the key person that is important to 
learners’ behaviors in the e-learning process”[10]. The instructors may play key roles in “learners’ e-learning 
processes, and their teaching style, kindly help, and timely response”[10,94]. Hence, the following hypothesis is 
formulated: 

H10: INSQ positively and significantly influences on CIU.  

3.10. Information quality (IQ) 

The desired properties of an IS’s output are represented by the success dimension content and information 
quality[95]. The quality of information is frequently cited as a crucial determinant of user satisfaction[96–100], and 
for intention to use e-learning systems[10,100,101]. Hence, the following hypothesis is formulated: 

H11: IQ positively and significantly influences on CIU. 

3.11. Learning value (LV) 

LV is “the students’ positive perceptions about learning from the LMS influencing their intention to 
devote more time and effort to explore and obtain the required knowledge from the LMS”[11]. Learning value 
has a positive and substantial impact on students’ behavioral intention to use mobile learning[11]. Hence, the 
following hypothesis is formulated: 

H12: positively and significantly influences on CIU.  
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3.12. Perceive behavioral control (PBC) 

PBC refers to “people’s perception of the ease or difficulty of performing the behavior of interest”[41]. In 
previous m-learning research, PBC is found to have a significant impact on CI[60,62,102]. Thus, the following 
hypothesis is put forward:  

H13: PBC positively and significantly influences on CI.  

3.13. Performance expectancy (PE) 

PE is “the degree to which an individual believes that using the system will help him or her to attain gains 
in job performance”[44]. Previous studies have found that performance expectancy to be a critical predictor for 
behavioral intention (BI) e-learning tools[9,35,77,78,100,103]. Hence, it was hypothesized that: 

H14: PE positively and significantly influences on CIU.  

3.14. Perceived ease of use (PEOU)  

PEOU refers to “the degree to which a person believes that using a particular system would be free of 
effort”[40]. It has been shown in numerous studies conducted earlier that PEOU has a significant association 
with PU[61,65,104–106]. Furthermore, PEOU can have a stronger impact on the continuous intention (CI) to use m-
learning[65,105–107]. Hence, the following hypotheses are suggested:  

H15: PEOU positively and significantly influences on CIU.  

H16: PEOU positively and significantly influences on PU.  

3.15. Personnel innovativeness (PI) 

Personal innovativeness is defined “as the form of openness to change”[108]. Personnel innovativeness has 
a positive and substantial impact on students’ behavioral intention to use the mobile learning[51,109]. Therefore, 
we have proposed that: 

H17: PI positively and significantly influences on CIU. 

3.16. Perceived usefulness (PU) 

PU refers the “the degree to which a person believes that using a particular system would enhance his or 
her job performance”[40]. Previous research indicated that PU has a significant relationship with SA[65,70]. It 
was also pointed out that PU is significantly affecting the CI to use m-learning[61,65,70,104,107]. Therefore, the 
following hypotheses are put forward: 

H18: PU positively and significantly influences on CIU. 

H19: PU positively and significantly influences on SA.  

3.17. Price value (PV) 

PV was defined as “a consumer’s cognitive trade-off between the perceived benefits of the application 
and the monetary cost for using it”[35,71]. In other words, the price value is positive when the benefits of adopting 
a certain system are perceived to be greater than the monetary cost. Price value was found to have a positive 
effect on BI toward adopting certain technology in IS research[35,79], as well as in e-learning[90,91]. Accordingly, 
this study proposes the following hypothesis:  

H20: PV positively and significantly influences on CIU.  
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3.18. Satisfaction (SA) 

SA refers to “the affective attitude towards a particular computer application by an end user who interacts 
with the application directly”[110]. Several m-learning studies triggered out that SA has a significant impact on 
CI[65,69,70,102,111]. Hence, the following hypothesis is formulated:  

H21: SA positively and significantly influences on CI.  

3.19. Self-efficacy (SE)  

SE was defined as “individuals’ judgments about their capabilities to organize and execute the courses of 
action required to produce given attainments”[112]. In the social cognitive theory (SCT), self-efficacy is a type 
of self-assessment that helps the understanding of human behavior and performance in a certain task[113]. In 
the context of IT, self-efficacy has been defined as “an individual’s perceptions of his or her ability to use 
computers in the accomplishment of a task rather than reflecting simple component skills”[114]. Prior studies 
have found self-efficacy to be a critical predictor that directly affects the user’s behavioral intention[115,116] and 
e-learning adoption[117,118]. On the contrary, Venkatesh et al.[44] did not find a casual direct relationship between 
self- efficacy and behavioral intention. Hence, the following hypothesis is formulated: 

H22: SE positively and significantly influences on CIU. 

3.20. Service quality (SEQ) 

SEQ is the “desirable characteristics of the system outputs; that is, management reports and Web pages. 
For example relevance, understandability, accuracy, conciseness, completeness, understandability, currency, 
timeliness, and usability”[119]. Service quality has been found to have a significant positive effect on satisfaction 
in the e-learning context[98,100,120–122], and on intention to use e-learning systems in some studies[96,100,101,123]. 
Therefore, it was hypothesized that: 

H23: SEQ positively and significantly influences on CIU.  

3.21. Social influence (SI) 

SI is defined as “is defined as the degree to which an individual perceives that important others believe 
he or she should use the new system”. Subjective norms, social factors, and images are all used by UTAUT to 
establish social influence[44]. In literature, social influence had been considered to have a significant 
relationship with intentions across various fields of application[106,124,125] but Tan et al.[54] findings deviated 
from the general belief with an insignificant relationship. It was hypothesized that: 

H24: SI positively and significantly influences on CIU.  

3.22. Subjective norms (SN) 

SN refers to “the perceived social pressure to perform or not to perform the behavior”[41]. Previous studies 
in m-learning pointed out that SN has a significant effect on CI[126,127]. Hence, the following hypothesis is 
proposed:  

H25: SN positively and significantly influences on CI.  

3.23. System quality (SYSQ) 

The degree of functionality of an educational system is measured by its system quality[45]. It is the 
“desirable characteristics of an information system, i.e ease of use, system flexibility, system reliability and 
ease of learning, as well as system features of intuitiveness, sophistication, flexibility and response times”[119]. 
Technical system quality has been found to have a significant positive effect on satisfaction in the e-learning 
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context[96,97,99,100,121,128], and on intention to use e-learning system[10,100,101,123]. Hence, the following hypothesis 
is formulated: 

H26: SYSQ positively and significantly influences on CIU.  

3.24. Technology experience (TE) 

It is stated that “prior experience in technology is the key antecedent in the acceptance of a new 
technology”[44]. Technology experience is found to have a significant impact on CIU[44,55]. Hence, the following 
hypothesis is formulated: 

H27: TE positively and significantly influences on CIU.  

3.25. Trust (TRST) 

Trust was defined as “individual willingness to depend based on the beliefs in ability, benevolence, and 
integrity”[129]. Trust means a subjective expectation that someone or something is reliable and willing to accept 
vulnerability[130]. The particular interest in this construct could be attributed to the high uncertainty, 
intangibility, heterogeneity, and vagueness characterized by using the Internet and technologies[129]. Therefore, 
adding trust will complement the existing factors of the UTAUT2 and is expected to have a direct influence 
on behavioral intention toward using e-learning[78,131]. Hence, the following hypothesis is formulated: 

H28: TRST positively and significantly influences on CIU.  

4. Methodology  

4.1. Measure of constructs 

A convenient sampling technique was used to achieve the research’s purpose[107,132]. To collect research 
data, validated items from existing studies were used as the basis of a self-administered questionnaire survey 
measured by a five-point Likert scale. Table 1 contains all cited items. 

4.2. Data collection and respondent profile 

Because of the COVID-19 pandemic, an online questionnaire survey was utilized instead of face-to-face 
consultations to minimize the risk of health issues. Google Forms, the most popular online survey tool, was 
used to create and distribute the questionnaire. Effective responses exceed the requirement of a minimum 
sample size of 238 calculated by G*Power (Version 3.1.9.2) with a 0.95 power level, 0.05 alpha value, 0.15 
impact size, and 25 predictors. The overall response rate was much higher than the minimum recommended 
sample size of 250. SEM analysis can be performed despite the modest size of the sample[133]. In Bentler and 
Chou[134], as well as Hair et al.[135], ten times the minimum threshold is recommended as a minimum size for 
such a study. Next, a pilot test is conducted to determine the scale’s reliability and validity. Participants were 
asked to read the instructions section of the questionnaire before filling out the questionnaire to acknowledge 
confidentiality and declare the survey purpose. 

Two sections were included in the online questionnaire. An anonymous profile of participants was 
collected in section one including their gender, age, and educational background. Second, a 5-point Likert 
scale was used to gather participants’ opinions about mobile learning. In general, the demographic profile of 
respondents, females accounted for (60.5%) of the total sample, while male respondents (39.5%) of the total 
responses. Most of the respondents are between the ages of 21–30 (85.2%) and had either an undergraduate 
degree (84%) or vocational schools (8.6%). 
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5. Data analysis  

5.1. Statistical analysis 

This study employs deep learning-based dual-stage PLS-SEM and ANN methods to analyze the data as 
opposed to the existing literature that uses only structural equation modeling (SEM)[30,33]. PLS results will be 
used to rank significant variables based on the results of a deep learning-based hybrid approach. A PLS-SEM 
analysis will begin by testing hypotheses using the two-stage method (outer and inner models) recommended 
by Hair et al.[136]. As part of the second phase, researchers conduct sensitivity analyses to rank variables using 
ANN. 

5.2. Common method variance (CMV) 

CMV must be excluded from our study since the measuring scales were self-reported. All twenty-six 
constructs were first tested with Harman’s single-factor analysis to ensure they were free of CMV[137]. Based 
on these findings, a single component explains only 28.92% of the variance, which indicates that no evidence 
for CMV has been found[137]. The variance inflation factors (VIFs) have been calculated as a result of the 
collinearity test. Multicollinearity is not a problem since the VIF is values under the threshold of 5[138,139]. 

5.3. Assessing the outer measurement model 

A PLS-SEM analysis will begin by testing hypotheses using the two-stage method (outer and inner 
models) recommended by Hair et al.[136].  

5.4. Measurement model results 

From Table 2, convergent validity for all measurement model construct reliability were above the 
threshold value. Composite reliability (CR), Cronbach’s alpha (α), and Djikstra Rhomba (rhoA) were above 
0.7[140]. Except one item (PI2), the loadings of each item were above than the recommended value 
of >0.708[140]. From Table 2, average variance extracted (AVE) values exceeded the threshold values 0.5[140]. 
Thus, it appears that the data has no issues of convergent validity and reliability.  

Table 2. Measurement model. 

Construct Variable Loading Α rho_A CR AVE VIF Sources 
ATT ATT1 0.925 0.920 0.920 0.949 0.862 3.271 Cheon et al.[60]; Davis[40] 
 ATT2 0.932     3.476  
 ATT3 0.927     3.288  
AU AU1 0.893 0.911 0.913 0.937 0.789 2.932 Ajzen and Fishbein[39]; 

Mohammadi[104]; Venkatesh 
et al.[44] 

 AU2 0.895     3.146 
 AU3 0.872     2.445 
 AU4 0.893     2.967  
CIU CIU1 0.894 0.947 0.950 0.958 0.792 3.675 Bhattacherjee[63]; Liaw and 

Huang[141]  CIU2 0.928     5.148 
 CIU3 0.817     2.317  
 CIU4 0.929     5.584  
 CIU5 0.933     5.805  
 CIU6 0.830     2.438  
CQ CQ1 0.796 0.871 0.875 0.906 0.659 1.843 Cheng[10]; Yakubu et al.[23] 
 CQ2 0.804     1.977 
 CQ3 0.833     2.187  
 CQ4 0.817     2.080  
 CQ5 0.808     1.780  
EC EC1 0.909 0.922 0.923 0.951 0.865 2.839 Bhattacherjee[63]; Liaw and 

Huang[141]  EC2 0.947     4.531 
 EC3 0.934     3.847  
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Table 2. (Continued). 

Construct Variable Loading Α rho_A CR AVE VIF Sources 
EE EE1 0.932 0.934 0.938 0.953 0.835 4.444 Venkatesh et al.[44]; 

Venkatesh et al.[71]  EE2 0.899     3.164 
 EE3 0.931     4.036  
 EE4 0.891     3.282  
FC FC1 0.842 0.918 0.920 0.936 0.708 2.716 Venkatesh et al.[44]; 

Venkatesh et al.[71]  FC2 0.827     2.844 
 FC3 0.863     2.977  
 FC4 0.838     2.419  
 FC5 0.861     3.531  
 FC6 0.818     3.043  
HBT HBT1 0.899 0.921 0.922 0.944 0.808 3.188 Venkatesh et al.[71] 
 HBT2 0.870     2.533  
 HBT3 0.898     3.040  
 HBT4 0.928     4.024  
HM HM1 0.870 0.899 0.912 0.930 0.769 2.635 Venkatesh et al.[71] 
 HM2 0.917     3.685  
 HM3 0.786     2.038  
 HM4 0.927     3.978  
INSQ INSQ1 0.864 0.919 0.921 0.939 0.755 2.549 Cheng[10]; Lwoga[12]; Yakubu 

et al.[23]  INSQ2 0.884     2.903 
 INSQ3 0.855     2.546  
 INSQ4 0.875     2.937  
 INSQ5 0.867     2.792  
IQ IQ1 0.845 0.864 0.876 0.907 0.709 2.010 Delone and McLean[45]; 

Sharma et al.[55]  IQ2 0.861     2.024 
 IQ3 0.837     2.182  
 IQ4 0.824     2.089  
LV LV1 0.830 0.915 0.918 0.937 0.747 2.243 Ain et al.[11]; Yakubu et al.[23] 
 LV2 0.867     2.679 
 LV3 0.909     3.736  
 LV4 0.886     3.125  
 LV5 0.828     2.181  
PBC PBC1 0.912 0.903 0.903 0.939 0.837 2.851 Cheon et al.[60], Davis[40] 
 PBC2 0.920     2.952  
 PBC3 0.912     2.782  
PE PE1 0.869 0.933 0.937 0.949 0.788 2.845 Venkatesh et al.[44]; 

Venkatesh et al.[71]  PE2 0.895     3.322 
 PE3 0.829     2.312  
 PE4 0.929     5.088  
 PE5 0.914     4.410  
PEU PEU1 0.894 0.938 0.940 0.953 0.801 3.804 Davis[40] 
 PEU2 0.906     3.770  
 PEU3 0.898     3.644  
 PEU4 0.905     3.774  
 PEU5 0.872     2.904  
PI PI1 0.926 0.904 0.907 0.940 0.837 3.073 Al-Busaidi[142]; Al-

Busaidi[143]; Sharma et al.[55]; 
Schillewaert et al.[144] 

 PI2* 0.682      
 PI3 0.919     3.121 
 PI4 0.903     2.622  
PU PU1 0.933 0.953 0.954 0.964 0.843 5.147 Davis[40] 
 PU2 0.927     4.998 
 PU3 0.930     5.156  
 PU4 0.920     4.293  
 PU5 0.881     3.185  

 

 



Environment and Social Psychology | doi: 10.54517/esp.v9i4.2307 

14 

Table 2. (Continued). 

Construct Variable Loading Α rho_A CR AVE VIF Sources 
PV PV1 0.823 0.854 0.864 0.901 0.696 2.533 Venkatesh et al.[71] 
 PV2 0.883     2.942  
 PV3 0.816     2.638  
 PV4 0.811     2.575  
SAT SAT1 0.936 0.911 0.915 0.944 0.850 4.461 Bhattacherjee[63]; Liaw and 

Huang[141]  SAT2 0.949     4.916 
 SAT3 0.878     2.276  
SE SE1 0.888 0.896 0.897 0.929 0.767 3.188 Zhang et al.[145]; Kim and 

Niehm[146];Tarhini et al.[78]  SE2 0.912     3.602 
 SE3 0.924     4.360 
 SE4 0.770     1.617  
SEQ SEQ1 0.885 0.890 0.892 0.924 0.752 2.692 Delone and McLean[45]; 

Sharma et al.[55]  SEQ2 0.855     2.307 
 SEQ3 0.862     2.469  
 SEQ4 0.866     2.516  
SI SI1 0.931 0.886 0.887 0.930 0.815 3.888 Venkatesh et al.[44] 
 SI2 0.866     1.935 
 SI3 0.910     3.499  
SN SN1 0.924 0.922 0.923 0.951 0.866 3.170 Ajzen and Fishbein[39]; 

Ajzen[41]; Cheon et al.[60]  SN2 0.927     3.419 
 SN3 0.940     3.916 
SYSQ SYSQ1 0.737 0.841 0.853 0.887 0.611 1.676 Delone and McLean[45]; 

Lwoga[12]; Sharma et al.[55]; 
Yakubu et al.[23] 

 SYSQ2 0.751     1.691 
 SYSQ3 0.785     1.912 
 SYSQ4 0.792     2.024  
 SYSQ5 0.840     1.963  
TE TE1 0.925 0.909 0.909 0.943 0.846 3.237 Al-Busaidi[142]; Sharma et 

al.[55]; Wan, and Fang[147]  TE2 0.902     2.606 
 TE3 0.932     3.560  
TRST TRST1 0.900 0.926 0.929 0.947 0.817 2.964 Venkatesh et al.[71] 
 TRST2 0.909     3.268 
 TRST3 0.904     3.490  
 TRST4 0.903     3.321 

 

Note: * Deleted item; α: Cronbach’s alpha; CR: Composite reliability: rhoA: Djikstra Rhomba; AVE: Average variance extracted; 
VIF: Variance inflated factor. 

Discriminant validity comprises Fornell–Larcker, HTMT, and cross-loading. There is evidence of 
alignment of the Fornell-Larker condition with the AVEs and their square roots. It has a greater correlation 
between AVEs and their square roots[148]. Lastly, HTMT values for this study are below 0.9, indicating no lack 
of discrimination[135,149]. A discriminant validity conclusion can be drawn based on the results. The assessment 
of the measurement model found no problems related to validity or reliability. Therefore, structural models 
can be assessed and analyzed using the collected data. 

5.5. Structural model assessment 

Additionally, the authors also conducted tests the good fitness of the structural model by applying the 
root mean squared residual covariance matrix (RMStheta) ≤0.12, normed fit index (NFI) ≥0.90, and the 
standardized root mean square residual (SRMR) ≤0.08[140,150,151]. Finally, the study computed goodness of ft 
(GOF)[152]. The GOF of this study is 0.77, which indicates the model is effective and fits the data 
satisfactorily[153]. 

The bootstrapping procedure was utilized with 5000 subsamples to test the structural model. Table 3 and 
Figure 1 depict that of the 28 hypotheses proposed in the model, fourteen of the hypotheses were significant; 
the remaining fourteen hypotheses, however, were not significant. The structural model also explained for 
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88%, 68%, 68%, and 79 % of the variance in CIU, AU, PU, and SAT, respectively (see Table 4). R2 value is 
0.26, 0.13, and 0.02, indicating substantial, moderate, or weak levels of predictive accuracy, respectively[153]. 
Regarding the effect size f2 and effects size q2, 0.02, 0.15, and 0.35 represent small, medium, and large effects 
respectively. A value below 0.02 indicates that no effect has been observed[140,154,155]. Table 4 and Table 5 
report the predictive relevance of the study (Q2) and effect sizes (f2 and q2). Furthermore, we evaluated the 
model’s predictive power using PLS predict[136,156]. There is a significant difference between the RMSE of the 
linear procedure and the RMSE of the naive linear procedure (Table 4). Consequently, Hair et al.[140] conclude 
that the empirical model is highly predictive. 

Table 3. Hypothesis testing. 

PLS path t-value Path coefficients f2 q2 

ATT -> CIU*** 4.130 0.000 0.64 0.04 

CIU -> AU*** 36.051 0.000 - - 

CQ -> CIU 0.502 0.615 0.07 0 

EC -> PU*** 5.585 0.000 0.25 0.14 

EC -> SAT*** 6.559 0.000 0.6 0.17 

EE -> CIU 0.116 0.908 2.22 0 

FC -> CIU 0.960 0.337 0.28 0 

HBT -> CIU** 2.223 0.026 0.04 0.01 

HM -> CIU 0.993 0.321 0 0 

INSQ -> CIU 0.718 0.473 0.19 0 

IQ -> CIU 0.239 0.811 0.13 0 

LV -> CIU 0.086 0.931 –0.55 0 

PBC -> CIU** 2.073 0.038 0.67 0.01 

PE -> CIU 0.032 0.974 –1.88 0 

PEU -> CIU 0.674 0.500 2.1 0 

PEU -> PU*** 5.327 0.000 0.16 0.12 

PI -> CIU** 2.078 0.038 1.4 0.01 

PU -> CIU** 1.987 0.047 0 0.01 

PU -> SAT*** 8.517 0.000 0.82 0.28 

PV -> CIU 0.622 0.534 0.07 0 

SAT -> CIU*** 2.903 0.004 0.13 0.01 

SE -> CIU 0.029 0.977 0.1 0 

SEQ -> CIU 0.699 0.485 0 0 

SI -> CIU 0.153 0.878 0 0 

SN -> CIU 1.128 0.259 0.04 0 

SYSQ -> CIU*** 3.045 0.002 0.07 0.02 

TE -> CIU* 1.914 0.056 0.1 0.01 

TRST -> CIU 1.225 0.221 0 0 

* p < 0.05, ** p < 0.01, *** p < 0.001. f2: effect size; q2: effect size. 

Table 4. PLS predict results. 

Construct PLS-SEM Linear model benchmark 

RMSE MAE Q²_predict RMSE MAE 

AU 0.901 0.734 0.562 1.09 0.806 
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Table 5. Quality of structural model. 

Endogenous constructs  Q²  R2 (%) 

ATT 
 

 

AU 0.526 0.68 

CIU 0.679 0.88 

CQ 
 

 

EC 
 

 

EE 
 

 

FC 
 

 

HBT 
 

 

HM 
 

 

INSQ 
 

 

IQ 
 

 

LV 
 

 

PBC 
 

 

PE 
 

 

PEU 
 

 

PI 
 

 

PU 0.562 0.68 

PV 
 

 

SAT 0.666 0.79 

SE 
 

 

SEQ 
 

 

SI 
 

 

SN 
 

 

SYSQ 
 

 

TE 
 

 

TRST 
 

 

Q2: predictive relevance; R2: coefficient of determination. 

5.6. Importance performance map analysis 

The Importance-performance map analysis (IPMA) was utilized as a post-hoc PLS analysis to detect the 
constructs that have high importance in the targeted variables yet underperform[157]. Results from Table 6 and 
Figure 2 depict that the highest importance is CIU (0.76), ATT (0.25), PU (0.19), SYSQ (0.15), and SAT 
(0.14). On performance, PI (70.70) indicates the highest performance, followed by, PBC (69.76), EE (65.09), 
IQ (64.55), FC (64.18), and TE (62.85). 
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Table 6. Importance performance map results. 

Latent variables Importance (total effect)  Performance (index value) 

ATT 0.247 53.475 

CIU 0.762 54.042 

CQ –0.030 56.294 

EC 0.148 56.020 

EE –0.007 65.091 

FC 0.055 64.181 

HBT 0.115 54.610 

HM 0.044 56.760 

INSQ –0.035 57.521 

IQ 0.012 64.548 

LV –0.006 56.724 

PBC –0.105 69.756 

PE 0.002 54.397 

PEU 0.132 62.848 

PI 0.089 70.707 

PU 0.193 53.385 

PV –0.023 53.910 

SAT 0.143 54.024 

SE 0.001 62.458 

SEQ 0.033 57.057 

SI 0.006 56.894 

SN 0.051 50.524 

SYSQ 0.151 58.642 

TE –0.080 62.849 

TRST –0.053 60.336 

6. Artificial neural network (ANN) 
To identify nonlinear relationships between the variables, ANN analysis was also used in the present 

study. The ANN only used significant factors from the PLS-SEM results. Nonlinear relationships cannot be 
captured by the PLS-SEM structural equation model, despite its robustness for non-normal distributions. To 
capture linear and nonlinear relationships, neural network algorithms do not require a normal distribution[158]. 
Our nonlinear analysis and prediction were therefore based on ANNs. Haykin[159] states that “massively 
parallel distributed processor made up of simple processing units, which have a neural propensity for storing 
experimental knowledge and making it available for use”[159]. ANNs use a deep learning architecture built with 
dual layers that provide in-depth estimation results[33,34]. A non-normal distribution of exogenous and 
endogenous data supports the application of ANNs as well as the existence of non-linear relationships. ANN 
provides the researcher with several benefits: it addresses the linearity and nonlinearity among the predictors, 
prioritizes the factors based on their relative importance, and learns by input-output mapping[160]. A robust 
ANN is also resistant to outliers, noise, and small samples. Compared to other regression methods, ANN tends 
to have greater prediction accuracy[37,161]. 
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6.1. Validation of ANN 

IBM’s SPSS neural network module was used to implement the ANN analysis. For activation functions 
and outcome layers, sigmoid functions were used. It is possible to reduce faults and increase prediction 
accuracy by implementing several phases of the learning procedure. Owing to the complexity of the models 
and several outputs, the current research model has been further sub-divided into four ANN models. For 
instance, Model 1 (output-CIU) contains nine input neurons: PI, PU, SAT, SYSQ, TE, ATT, HBT, PBC, and 
PEU. Model 2 (output-PU) contains two input neurons: EC and PEU. Model 3 (output-SAT) contains two 
input neurons: EC and PU. Finally, Model 4 (output-AU) has only one input neuron: CIU. 

We applied 10-fold cross-validating technique to evade the possibility of over-fitting with 90% data for 
training and the remaining 10% of the data for testing, respectively[162]. Root Mean Square Error (RMSE) was 
used to measure the accuracy of the ANN model. As depicted in Table 7, the values of RMSE are found to be 
relatively low of the training and testing procedures, respectively. 
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Table 7. RMSE values for CIU, PU, SAT, and AU. 

  Model 1 
(R2 = 
92%) 

     Model 2 
(R2 = 
85%) 

     Model 3 
(R2 = 
88 %) 

     Model 4 
(R2 = 
86%) 

    

  Input 
neurons: 
PI. PU. 
SAT. 
SYSQ. 
TE. 
ATT. 
HBT. 
PBC 

     Input 
neurons: 
EC. PEU 

     Input 
neurons: 
EC. PU 

  Input 
neurons: 
CIU 

       

  Output 
nodes: 
CIU 

     Output 
nodes: 
PU 

     Output 
nodes: 
SAT 

  Output 
nodes 
AU 

       

  Training   Testing   Training   Testing   Training   Testing   Training   Testing  

Neural 
network 

N SSE RMS
E 

N SSE RMS
E 

N SSE RMS
E 

N SSE RMS
E 

N SSE RMS
E 

N SSE RMS
E 

N SSE RMS
E 

N SSE RMSE 

1 226 1.754 0.088 24 0.174 0.085 218 4.312 0.141 32 0.257 0.090 221 2.506 0.106 29 0.334 0.107 224 3.402 0.123 26 0.490 0.137 

2 225 1.826 0.090 25 0.110 0.066 223 4.466 0.142 27 0.507 0.137 225 2.960 0.115 25 0.235 0.097 218 3.817 0.132 32 0.380 0.109 

3 226 1.738 0.088 24 0.211 0.094 213 3.809 0.134 37 0.759 0.143 221 2.389 0.104 29 0.303 0.102 225 3.735 0.129 25 0.301 0.110 

4 232 1.809 0.088 18 0.156 0.093 226 4.358 0.139 24 0.531 0.149 222 2.633 0.109 28 0.321 0.107 220 3.435 0.125 30 0.525 0.132 

5 234 1.992 0.092 16 0.102 0.080 219 4.154 0.138 31 0.484 0.125 224 2.903 0.114 26 0.336 0.114 227 3.407 0.123 23 0.450 0.140 

6 218 1.728 0.089 32 0.246 0.088 220 4.114 0.137 30 0.521 0.132 228 2.422 0.103 22 0.443 0.142 225 3.508 0.125 25 0.260 0.102 

7 230 2.327 0.101 20 0.064 0.057 230 4.370 0.138 20 0.380 0.138 220 3.108 0.119 30 0.328 0.105 219 3.364 0.124 31 0.516 0.129 

8 226 1.836 0.090 24 0.129 0.073 219 4.193 0.138 31 0.435 0.118 228 2.730 0.109 22 0.225 0.101 227 3.587 0.126 23 0.383 0.129 

9 235 2.037 0.093 15 0.066 0.066 223 4.190 0.137 27 0.704 0.161 217 2.421 0.106 33 0.372 0.106 228 3.444 0.123 22 0.298 0.116 

10 224 2.006 0.095 26 0.108 0.064 224 4.950 0.149 26 0.494 0.138 223 2.605 0.108 27 0.220 0.090 225 3.585 0.126 25 0.310 0.111 

Mean  1.905 0.091  0.137 0.077  4.292 0.139  0.507 0.133  2.668 0.109  0.312 0.107  3.528 0.126  0.391 0.122 

SD  0.187 0.060  0.004 0.013  0.294 0.004  0.144 0.019  0.251 0.005  0.070 0.014  0.152 0.003  0.099 0.013 
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6.2. Sensitivity analysis 

Table 8 depicts the power of predictors in ANN models. The results indicate that ATT had the strongest 
power in predicting CIU, followed by PU. On the other hand, PEU exhibits the strongest prediction of PU, 
followed by EC. Also, PU exhibits the strongest prediction of SAT, followed by EC. Lastly, since CIU is the 
only predictor for AU. The normalized importance of the predictor is 100%. As depicted in Figures 3–6, the 
four ANN models were used in the sensitivity analysis. 

Table 8. Sensitivity analysis for ANN Model 1, 2, and 3. 

 ANN model 1 (output neuron: CIU) ANN model 2 (output 
neuron: PU) 

ANN model 3 
(output 
neuron: SAT) 

ANN 
model 4 
(output 
neuron: 
AU) 

Neural 
network 

PI  PU SAT SYSQ TE ATT HBT PBC EC PEU EC PU CIU 

1 0.059 0.210 0.208 0.058 0.023 0.226 0.209 0.008 0.516 0.484 0.463 0.537 1.000 

2 0.058 0.162 0.167 0.156 0.056 0.242 0.095 0.067 0.538 0.462 0.406 0.594 1.000 

3 0.067 0.211 0.121 0.106 0.043 0.236 0.161 0.052 0.552 0.448 0.432 0.568 1.000 

4 0.018 0.196 0.198 0.121 0.066 0.225 0.141 0.036 0.421 0.579 0.452 0.548 1.000 

5 0.048 0.171 0.169 0.085 0.053 0.267 0.145 0.062 0.455 0.545 0.399 0.601 1.000 

6 0.027 0.207 0.203 0.084 0.058 0.250 0.166 0.005 0.471 0.529 0.426 0.574 1.000 

7 0.013 0.220 0.249 0.026 0.067 0.302 0.092 0.031 0.432 0.568 0.407 0.593 1.000 

8 0.075 0.271 0.119 0.15 0.027 0.252 0.046 0.061 0.489 0.511 0.406 0.594 1.000 

9 0.087 0.133 0.242 0.082 0.070 0.171 0.160 0.055 0.468 0.532 0.361 0.639 1.000 

10 0.050 0.254 0.151 0.048 0.031 0.208 0.231 0.027 0.585 0.415 0.430 0.570 1.000 

Average 
relative 
importance 

0.050 0.204 0.183 0.092 0.049 0.238 0.144 0.040 0.493 0.507 0.418 0.582  

Normalized 
relative 
importance 
(%) 

21% 85% 77% 38% 21% 100% 61% 17% 97% 100% 72% 100% 100% 

 
Figure 3. ANN model 1. 
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Figure 4 ANN model 2. 

 
Figure 5. ANN model 3. 

 
Figure 6. ANN model 4. 

From the average synaptic weights of the input neurons in the tenfold neural network depicted in Table 
9, it was found that attitude was the predictor with the greatest contribution, followed by satisfaction, perceived 
usefulness, and system quality. On the other hand, inhibitory hidden neurons H(2:1), H(2:2), H(2:3), H(2:4), 
and H(2:5) make up the five hidden neurons, with H(2:3) being the most inhibitory of all. Finally, we computed 
the goodness-of-fit index of the ANN models Lee et al.[30], Akgül and Uymaz[33]. This is similar to R2 in SEM. 
The results reveal that the ANN models predict continuance intention with an accuracy of 92 %, PU (R2:85%), 
SAT (R2: 88%), and AU (R2: 86%). This indicates that the ANN analysis represents endogenous constructs 
better than the PLS-SEM analysis since the R2 value in the ANN analysis is higher. ANNs are capable of 
capturing non-linear relationships, which is largely due to the two-hidden-layer deep learning architecture.  
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Table 9. Average synaptic weights of the input and hidden neurons in the ten-fold ANN. 

Parameter estimates 
 

Predictor Predicted 
 

Hidden layer 1 Hidden layer 2 Output 
layer 

Total 
contribution 

H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) H(2:1) H(2:2) H(2:3) H(2:4) H(2:5) CIU 
 

Input 
layer 

(Bias) 0.574 –0.127 –0.378 –0.383 1.312 –0.033 –0.084 
      

2.889 

HBT –0.722 0.355 1.097 1.608 –0.273 –0.615 0.310 
     

  4.981 

PBC 0.019 0.525 1.120 1.777 0.822 0.357 0.590 
    

    5.210 

PEU –0.080 0.705 0.888 1.612 –0.064 –0.513 0.436 
    

    4.297 

PI –0.111 –0.115 0.548 1.511 –0.179 –0.064 0.564 
     

  2.863 

SYSQ –0.196 0.382 0.883 1.730 –0.709 –0.825 0.861             5.586 

TE 0.547 0.613 0.407 2.022 0.318 0.024 0.311             4.242 

PU –0.513 0.047 1.159 2.347 –0.605 –0.781 0.822             6.274 

SAT –1.057 0.429 1.426 1.864 –0.654 –0.598 0.397             6.425 

ATT –1.147 0.565 1.451 2.495 –1.006 –0.411 0.590             7.665 

Hidden 
layer 1 

(Bias)               –0.292 –0.451 –0.774 –0.234 0.444   
 

H(1:1)               –1.058 –0.856 0.783 –3.508 1.253   
 

H(1:2)               –1.553 –0.955 0.203 –5.752 2.050   
 

H(1:3)               0.615 0.354 –1.458 2.100 –0.311   
 

H(1:4)               0.363 0.556 –1.277 –1.434 0.053   
 

H(1:5)               0.374 –0.205 –0.829 6.963 –1.508   
 

H(1:6)               0.218 –0.278 –0.924 3.385 –0.295   
 

H(1:7)               0.606 0.710 –0.747 2.780 –0.363   
 

Hidden 
layer 2 

(Bias)                         0.275 
 

H(2:1)                         5.209 
 

H(2:2)                         7.645 
 

H(2:3)                         –9.310 
 

H(2:4)                         –5.400 
 

H(2:5)                         –2.589 
 

The path coefficient and normalized relative importance are shown in Table 10. PLS-SEM and ANN 
models 1 and 2 results were inconsistent, except for ANN model 3 and 4. Table 10 compares the results 
obtained by PLS-SEM and ANN. ANN and PLS-SEM were consistent in their results in terms of attitude as 
the biggest factor of continuous intention. There may be a difference because ANNs are better suited for 
capturing nonlinear relationships than other machine learning tools. There were only one or two predictors in 
both ANN models 3 and 4. 
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Table 10. Comparison between PLS-SEM and ANN results. 

The final step was to compare the PLS-SEM and ANN regression results according to the path coefficient 
strength and normalized relative importance ranking. An R2 value indicating how well the predicted value 
matches the true value was used. ANN is found to have a higher R2 than PLS-SEM according to Table 10. 
The prediction accuracy of ANN is high because it measures both linear and nonlinear relationships between 
variables[29,33,163,164]. Root means square error is the square root of the deviation between the observed value 
and the true value, divided by the square root of n, which is used to measure deviations between the observed 
value and the true value. PLS-SEM deviates more from ANN regression as depicted in Table 10. Using the 
SEM-ANN two-stage method, this paper provides further evidence of the effectiveness of the SEM-ANN two-
stage method in predicting continuous mobile learning intentions. 

7. Discussion 
Mobile learning’s continued use after COVID-19 is influenced by several factors. This is one of the few 

studies to attempt to integrate the literature to study the drivers of continuous intention. This integrated model 

PLS 
path 

Path 
coefficient 

ANN 
results: 
normalized 
relative 
importance 
(%) 

Ranking 
(PLS-SEM) 
[based on 
path 
coefficient] 

Ranking 
(ANN) 
[based on 
normalized 
relative 
importance 

Remark 
not match 

RMSE 
(ANN) 

RMSE 
(PLS-SEM) 

ANN 
regression 
prediction 

PLS-SEM 
regression 
prediction 

Model 1 (Output: CIU) 0.077 0.43 92% 88% 

PU -> 
CIU 

0.17 85.49 3 2 not match     

ATT -> 
CIU 

0.34 100 1 1 match     

SAT -> 
CIU 

0.18 76.68 2 3 not match     

PI -> 
CIU 

0.10 20.99 6 7 not match     

SYSQ 
-> CIU 

0.16 38.46 4 5 not match     

TE -> 
CIU 

-0.10 20.69 7 6 not match     

PBC -> 
CIU 

-0.12 16.90 8 8 not match     

HBT -> 
CIU 

0.15 60.58 5 4 not match     

Model 2 (Output: PU) 0.133 0.58 85% 68% 

EC -> 
PU 

0.45 97 1 2 not match     

PEU -> 
PU 

0.42 100 2 1 not match     

Model 3 (Output: SAT) 0.107 0.54 88% 79% 

EC -> 
SAT 

0.41 72 2 2 match     

PU -> 
SAT 

0.53 100 1 1 match     

Model 4 (Output: AU) 0.122 0.54 86% 68% 

CIU -> 
AU 

0.82 100 1 1 match     
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combines the TAM, TPB, ECM, and D&M IS Success Models. Extending the UTAUT2 incorporated trust, 
personal innovation, learning value, instructor quality, and course quality to create a new relationship. 

EC strongly influenced satisfaction and perceived usefulness with mobile learning. This research is also 
not aligned with prior studies’ findings such as Al-Emran et al.[14]; Chen et al.[68]; Hong et al.[69]; Joo et al.[65]; 
Kim[102]; Oghuma et al.[70]. This outcome may be explained by the fact that students will surely behave better 
and be more pleased with m-learning systems when their expectations of m-learning benefits are confirmed. 
Providing mobile learning systems with the benefits students expect will increase their performance and 
satisfaction. 

PEU, on the other hand, is empirically confirmed to have a crucial positive interaction, with PU as 
theorized. This study confirms previous results on mobile learning[14,15,61,65,104,105]. Surprisingly, our finding 
indicates that CIU is not significantly influenced by PEU. The latest studies’ findings appear to be in 
contradiction with earlier findings[14,23,65,105,106,126]. The mobile learning platform may improve the performance 
and willingness of students to utilize it if they are convinced of its usefulness. To improve students’ 
performance and satisfaction with these systems, developers, and designers need to place even more emphasis 
on these characteristics. 

Similarly, this study reveals that perceived usefulness is important for ongoing 
intention[65,68,70,102,105,126,165,166]. PU contributes greatly to satisfaction, as previously demonstrated in other 
studies[15,65,68,70,104,167]. Having an m-learning system that improves students’ performance might cause them to 
be more satisfied as a result of the experiential association between these two aspects. 

The research findings also demonstrated that ATT and PBC have a significant impact on the continuing 
desire to utilize mobile learning. The findings are aligned with prior researches such as Cheon et al.[60]; 
Yadegaridehkordi et al.[61]; Yeap et al.[62]; Al-Emran et al.[14], PBC[60,62,102]. Regarding the relationship between 
SN and CIU, the results contradict[14,126,127]. Continuous intention (CIU) and actual usage (AU) are strongly 
correlated. This research therefore confirms CIU as a positive and significant factor in actual m-learning use, 
as earlies studies have shown[14,23,64,65]. It was found that, during the trial period, mobile learning had no effect 
on students’ intentions to use it in educational activities, whether they had a positive or negative experience. 

This study depicts that the quality of courses, instructors, and information can negatively affect 
continuous intention, as compared to previous studies[23]. Previous studies have indicated that instructors’ 
attitudes impact learners’ adoption of e-learning[10,94,96,104,120,121,168]. Service quality positively and significantly 
influences continuous intention. Previous studies have also reached similar conclusions[15]. There is a 
significant influence of system quality on continuous intention in several m-learning studies. Previous studies 
have confirmed the current results[10,23,100,101].  

As a result, this study shows that students perceive mobile learning as satisfactory and compatible with 
their ongoing intentions when technology is perceived as satisfactory and compatible[15,65,69,70,102,111]. 

It was found that HM has a statistically insignificant and negative effect on the rejected hypotheses, 
inconsistent with prior studies[11,68,77,78,90,91,103]. Habit was found to affect continuous intention toward using 
mobile learning technology in mobile learning studies[78,87,90,91]. Similarly, consistent with Lewis et al.[90] and 
Raman and Don[91] were found to have a significant positive effect on CI. The current paper also does not 
support that continuous intention was not significantly influenced by price value.  

Additionally, effort expectation seems to have some effect on behavioral intentions in Qatar, but not in 
the United States. Our results did not support the conclusions of previous studies[44,78,103,169]. 
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Surprisingly, trust played a significant impact on continuous intention, one core construct that is not 
supported, which is not align with prior studies’ findings of Tarhini et al., Mohd Alwi and Fan and El-Khatib 
et al.[78,170,171]. As part of this study, it was hypothesized that students would adopt a web-based learning system 
if they thought the benefits were greater than the costs. 

Furthermore, this paper did not find an influential predictor of mobile learning continuous intention of 
self-efficacy different from past studies[78,172–175]. The variable of self-efficacy is used here to refer to the degree 
to which students are confident in their ability to accomplish certain learning tasks with the help of e-learning. 
Higher levels of SE are expected to increase the acceptance of e-learning platforms than lower levels. The 
findings of this study did not differ significantly from those of three previous ones regarding SN’s positive 
effects. 

It has been demonstrated in past studies of UTAUT2 that PE and EE are influential factors in the intention 
to continue using web-based learning tools, which contrasts with prior findings regarding performance 
expectations[15,25,58,75–78,126,176]. Regarding the effort expectancy[15,25,75,77,78,126,158,176]. 

Students’ decisions to implement mobile learning technologies are typically influenced by pressure from 
both coworkers and students as well as superiors and lecturers. Mobile learning usage did not significantly 
correlate with social influence, contrary to our expectations. The current study’s findings differ from previous 
studies[11,25,74,176,177–180]. 

A fairly positive and significant effect was also found between facilitating conditions and subjective 
norms on continuous intentions. Regarding the facilitating conditions, the finding contradicts the results of 
previous studies[11,25,74,175,177,180]. In keeping consistent with most related studies[14,15,181]. And in the context of 
subjective norm[126,127]. 

The current paper found the effect of PI on CIU. It is consistent with previous studies[51,109]. Finally, the 
study concluded that CIU is positively and significantly influenced by TE. The finding is in line with previous 
study[55]. 

8. Implication 

Theoretical and practical implications 

The use of deep learning methodology in this study enables a hybrid SEM-ANN technique, which differs 
from earlier empirical studies that were focused solely on SEM analysis. Research outcomes were robust 
because of a dual-stage analysis due to the increased statistical rigor. In terms of methodological contributions, 
this study utilizes a multi-analytical approach, which is regarded as an innovative approach in research 
methodology. PLS-SEM models are less predictive than ANN models. Deep learning ANNs provide better 
predictive power by identifying non-linear relationships between factors. Second, most importantly, this 
current study provides an amalgamation of the TAM, TPB, ECM, D&M IS Success Model, and UTAUT2 
approaches to comprehend for predicting the mobile learning continuance, which has not been found in the 
existing literature. Because most previous research focuses on either m-learning adoption or acceptability, 
mobile learning, especially during the COVID-19 pandemic, is becoming increasingly important due to a lack 
of literature, this would be a highly valuable contribution to the mobile learning industry. Third, as these 
systems still require additional research to investigate the variables influencing their prolonged use, the current 
study contributes to the Türk literature by identifying the factors influencing their continued use. Fourth, the 
created model explains 88%, 68%, 68%, 79% of variance to CIU, AU, PU, and SAT, respectively. Taken 
together, the empirical findings suggest that the suggested theoretical model is more successful in explaining 
continued usage in general, and specifically in the context of m-learning. Fifth, this study verifies and increases 
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the role of TAM (PU and PEU), TPB (ATT, PBC, and SN), ECM, the D&M IS Success Model, and the 
UTAUT2 components in affecting students’ ongoing use of mobile learning platforms in Turkey contexts. 

Both practitioners and scholars will benefit greatly from this study. First, the present study’s findings 
revealed that students in Türk higher education had a strong desire to continue using mobile learning 
technologies in educational activities, providing factual evidence to support such efforts. As a result, the 
creation of “mobile-friendly” content is a necessary step in the ongoing desire to utilize these platforms. 
Second, Türk higher education policymakers could maximize the benefits of m-learning by developing their 
m-learning regulations and processes. Third, faculty members should examine the key mobile learning 
predictors while employing mobile learning services to increase mobile learning acceptability. Finally, the 
outcomes have significant practical implications for educational developers, policymakers, and practitioners 
interested in developing and improving mobile learning solutions during COVID-19. 

9. Conclusion, limitation, and future lines of research 
Even though many papers have been done on mobile learning adoption and acceptability, it is suggested 

that very little attention be paid to long-term mobile learning use. To bridge this gap, TAM, TPB, ECM, D&M 
IS Success Model, and UTAUT2, wherein trust, personal innovativeness, learning value, instructor quality, 
and course quality were integrated, and new relationships were assumed among the proposed research model 
variables, Three Turkish state universities were surveyed to test the proposed methodology. The acquired data 
were then submitted to a hybrid analytic approach that combined structural equation modeling (SEM) and a 
deep learning-based artificial neural network (ANN). This research has some drawbacks. The results of this 
study were impressive, but future studies will need to address many limitations. Based on the context of this 
study, which was conducted at a university, its findings cannot be applied to verify its general validity. 
However, similar studies could be conducted at other universities and by users of m-learning in a different 
field, such as the workplace. Second, the convenience sampling technique was used, which is another major 
limitation. Third, while this study focused primarily on students’ mobile learning continuance, more studies 
on instructors’ long-term use and acceptance of such systems have a lot of potential. Fourth, furthermore, this 
study was conducted in the setting of Turkey. As a result, the findings may not truly represent m-learning 
acceptability in other nations, given the wide range of variances. For example, cultural variations, 
technological readiness, and other attributes may influence technology acceptance. Fifth, the current research 
was limited to the use of a survey instrument as a data-gathering tool. A case study, focus group, and interview 
are recommended for future research to enhance the results. A sixth limitation of the study is that it utilized a 
quantitative research method, whereas qualitative evaluation may uncover other explanations for the 
correlation between the postulated constructs. As a result, future research should use a qualitative method to 
supplement its quantitative findings. More research using cross-sectional and cross-cultural techniques is 
needed to improve the predictive value of mobile learning. Further studies should examine cross-cultural 
effects and personal attributes (age, gender, and experience) to broaden this approach. 
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