Open Journal Systems

Assessing the attention-interest-search-action-share (AISAS) model on the traditional textile exhibition visitors

Usep Suhud, Raya Sulistyowati, Doni Sugianto Sitohang, Ernita Maulida, Meta Bara Berutu

Article ID: 2408
Vol 9, Issue 7, 2024, Article identifier:

VIEWS - 326 (Abstract) 86 (PDF)

Abstract

Indonesia, rich in diverse ethnicities, celebrates numerous traditional textile traditions. Traditional textile marketing often finds expression through exhibitions. This study explores the applicability of the AISAS model in the exhibitions of traditional textiles in Jakarta. The research engages 235 participants aged 17 and above, all social media users with prior attendance at such exhibitions. Data analysis uses exploratory and confirmatory factor analyses and structural equation modelling. Hypothesis testing for the linear AISAS model affirms the impact of attention on interest, interest on search, search on action, and action on share, demonstrating positive outcomes. The non-linear AISAS model also confirms the impact of attention on interest and interest on search. However, the impact of interest on action reveals a nuanced result and the effects of search on action face rejection. This study holds significance for MICE (meetings, incentives, conferences, and exhibitions) marketing and textile exhibition strategies, providing valuable insights into consumer behaviour during traditional textile exhibitions.


Keywords

AISAS model; social media; marketing communication; online behaviour; traditional textile marketing

Full Text:

PDF



References

1. Chaobanpho Y, Angsukanjanaku J, Somkiettikul C, Development of competitiveness in the MICE industry for the Eastern economic corridor of Thailand. Int. J. Dev. Adm. Res., 2018; 1(1): 9-18.

2. Jung T, tom Dieck MC, eds. Augmented Reality and Virtual Reality. Springer International Publishing; 2018. doi: 10.1007/978-3-319-64027-3

3. Teerakunpisut S. An examination of the influence of Islam on hospitality and customer service standards in the Meetings, Incentives, Conventions and Exhibitions (MICE) industry in southern Thailand. Western Sydney University. 2018.

4. Zheng X. Research on the Marketing Strategy of MICE Cities Taking Asia as an Example. Proceedings of the 2nd International Conference on Culture, Education and Economic Development of Modern Society (ICCESE 2018). Published online 2018. doi: 10.2991/iccese-18.2018.215

5. Sugiyama K, Andree T. The Dentsu way: Secrets of cross switch marketing from the world's most innovative advertising agency. McGraw Hill Professional. 2010.

6. Suhud U, Allan M. Search, action, and share: The online behaviour relating to mobile instant messaging app in the tourism context. Journal of Environmental Management and Tourism. 2020;11(4): 903-912. doi: https://doi.org/10.14505//jemt.11.4(44).14

7. Suhud U, Purnamasari L, Allan M. Online Behaviour of Micro and Small Size Entrepreneurs: Testing the Attention-Interest-Search-Action-Share (Aisas) Model. Studies of Applied Economics. 2022; 40(2). doi: 10.25115/eea.v40i2.7214

8. Hoang TVB. Impact of digital marketing on consumer behavior at pilgrimage village boutique resort & spa-an AISAS model approach. Hue University Journal of Science: Economics and Development. 2023; 132(5B): 83-98.

9. Abdurrahim MS, Najib M, Djohar S. DEVELOPMENT OF AISAS MODEL TO SEE THE EFFECT OF TOURISM DESTINATION IN SOCIAL MEDIA. JURNAL APLIKASI MANAJEMEN. 2019; 17(1): 133-143. doi: 10.21776/ub.jam.2019.017.01.15

10. Ding MY, Wang WT. Analysis of Factors Influencing We-Intention in Healthcare Applications Based on the AISAS Model. International Journal of Human–Computer Interaction. Published online January 4, 2023: 1-18. doi: 10.1080/10447318.2022.2163566

11. Yuliati LN, Simanjuntak M. Digital Communication Innovation of Food Waste Using the AISAS Approach: Evidence from Indonesian Adolescents. Sustainability. 2024; 16(2): 488. doi: 10.3390/su16020488

12. Stephanidis C, Antona M, Ntoa S, et al. HCI International 2023 – Late Breaking Posters. Springer Nature Switzerland; 2024. doi: 10.1007/978-3-031-49215-0

13. Xue LL, Shen CC, Morrison AM, et al. Online Tourist Behavior of the Net Generation: An Empirical Analysis in Taiwan Based on the AISAS Model. Sustainability. 2021; 13(5): 2781. doi: 10.3390/su13052781

14. Angga Alhudha A, Setyonugroho W, Pribadi F. The Use of AISAS Method in Telemedicine Advertisement (Sentence Case). KESANS : International Journal of Health and Science. 2022; 1(10): 909-923. doi: 10.54543/kesans.v1i10.96

15. Qinghao Y. Research on consumer behavior in tourism e-commerce in the post-pandemic era-based on the AISAS model. Tourism Management and Technology Economy. 2022;5(2): 16-23. doi: 10.23977/tmte.2022.050204

16. Akagawa N, Smith L, eds. Safeguarding Intangible Heritage. Routledge; 2018. doi: 10.4324/9780429507137

17. Anggun Sari Sasmita, Nila Sartika Achmadi. The Popularity of TikTok and the Implementation of the AISAS Model on Marketing Communications Through TikTok. Manajemen Bisnis. 2022; 12(01): 62-76. doi: 10.22219/mb.v12i01.17863

18. Fannani SI, Najib M, Sarma M. THE EFFECT OF SOCIAL MEDIA TOWARD ORGANIC FOOD LITERACY AND PURCHASE INTENTION WITH AISAS MODEL. Jurnal Manajemen dan Agribisnis. Published online November 30, 2020. doi: 10.17358/jma.17.3.285

19. Rusli VY, Pradina YD. AISAS Model Analysis of General Insurance Company Strategy using Instagram (Study at PT Asuransi Tokio Marine Indonesia). American Journal of Humanities and Social Sciences Research (AJHSSR). 2021;5(7): 98-107.

20. Mulyana N, Safari A, Amrizal A. AISAS model analysis of purchases millenial generation in Sovereign Sukuk based on Cash Waqf Linked Sukuk (CWLS). Budapest International Research and Critics Institute-Journal (BIRCI-Journal).2023;6(1): 573-587.

21. Sumerta IK. Online Consumer Behavior on Using Social Media on E-Commerce, based on the AISAS Model Approach. Case Study; Bukalapak, Tokopedia and Blili.com. International Journal of Advanced Trends in Computer Science and Engineering. 2019; 8(1.5): 234-242. doi: 10.30534/ijatcse/2019/4281.52019

22. Marbach J, Lages CR, Nunan D. Who are you and what do you value? Investigating the role of personality traits and customer-perceived value in online customer engagement. Journal of Marketing Management. 2016; 32(5-6): 502-525. doi: 10.1080/0267257x.2015.1128472

23. Kotler P, Kartajaya H, Setiawan I. Marketing 4.0: moving from Traditional to Digital. John Wiley & Sons, 2016.

24. Bäckström K. “Shopping as leisure: An exploration of manifoldness and dynamics in consumers shopping experiences.” Journal of Retailing and Consumer Services. 2011; 18(3): 200-209. doi: 10.1016/j.jretconser.2010.09.009

25. Zak S, Hasprova M. The role of influencers in the consumer decision-making process. Kliestik T, ed. SHS Web of Conferences. 2020; 74: 03014. doi: 10.1051/shsconf/20207403014

26. Aljukhadar M, Bériault Poirier A, Senecal S. Imagery makes social media captivating! Aesthetic value in a consumer-as-value-maximizer framework. Journal of Research in Interactive Marketing. 2020; 14(3): 285-303. doi: 10.1108/jrim-10-2018-0136

27. Javed S, Rashidin MdS, Xiao Y. Investigating the impact of digital influencers on consumer decision-making and content outreach: using dual AISAS model. Economic Research-Ekonomska Istraživanja. 2021; 35(1): 1183-1210. doi: 10.1080/1331677x.2021.1960578

28. Pelawi YN, Irwansyah, Aprilia MP. Implementation of Marketing Communication Strategy in Attention, Interest, Search, Action, and Share (AISAS) Model through Vlog. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). Published online February 2019. doi: 10.1109/ccoms.2019.8821721

29. Vogt CA, Fesenmaier DR.Expanding the functional information search model. Annals of Tourism Research.1998;25(3): 551-578. https://doi.org/10.1016/S0160-7383(98)00010-3

30. Ho CI, Lin MH, Chen HM. Web users’ behavioural patterns of tourism information search: From online to offline. Tourism Management. 2012; 33(6): 1468-1482. doi: 10.1016/j.tourman.2012.01.016

31. Bruhn M, Schnebelen S. Integrated marketing communication – from an instrumental to a customer-centric perspective. European Journal of Marketing. 2017; 51(3): 464-489. doi: 10.1108/ejm-08-2015-0591

32. Dangi A, Saini CP, Singh V, et al. Customer perception, purchase intention and buying decision for branded products: measuring the role of price discounts. Journal of Revenue and Pricing Management. 2021; 20(2): 194-203. doi: 10.1057/s41272-021-00300-7

33. Emerson RW. Convenience Sampling Revisited: Embracing Its Limitations Through Thoughtful Study Design. Journal of Visual Impairment & Blindness. 2021; 115(1): 76-77. doi: 10.1177/0145482x20987707

34. Sharma VM, Klein A. Consumer perceived value, involvement, trust, susceptibility to interpersonal influence, and intention to participate in online group buying. Journal of Retailing and Consumer Services. 2020; 52: 101946. doi: 10.1016/j.jretconser.2019.101946

35. Melumad S, Hadi R, Hildebrand C, et al. Technology-Augmented Choice: How Digital Innovations Are Transforming Consumer Decision Processes. Customer Needs and Solutions. 2020; 7(3-4): 90-101. doi: 10.1007/s40547-020-00107-4

36. Singh V, Nanavati B, Kar AK, et al. How to Maximize Clicks for Display Advertisement in Digital Marketing? A Reinforcement Learning Approach. Information Systems Frontiers. 2022; 25(4): 1621-1638. doi: 10.1007/s10796-022-10314-0

37. Ahmad F, Mustafa K, Hamid SAR, et al. Online Customer Experience Leads to Loyalty via Customer Engagement: Moderating Role of Value Co-creation. Frontiers in Psychology. 2022; 13. doi: 10.3389/fpsyg.2022.897851

38. Wei PS, Lu HP. An examination of the celebrity endorsements and online customer reviews influence female consumers’ shopping behavior. Computers in Human Behavior. 2013; 29(1): 193-201. doi: 10.1016/j.chb.2012.08.005

39. Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. 8th ed. Cengage India;2016.

40. Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research. 2023;8(2): 23-74.

41. Tabachnick BG, Fidell LS, Ullman JB. Using multivariate statistics. Pearson Boston, MA,2007; 5.

42. Hu L, Bentler PM. Structural equation modeling: Concepts, issues, and applications. in Evaluating model fit, R. H. Hoyle, Ed. London: Sage, 1995; 76-99.

43. Browne MW, Cudeck R. Alternative Ways of Assessing Model Fit. Sociological Methods & Research. 1992; 21(2): 230-258. doi: 10.1177/0049124192021002005

44. Lin H-F, Chen C-H. The persuasion effect of sociability in the design and use of an augmented reality wedding invitation app. Journal of Internet Technology.2019;20(1): 269-282.

45. Ruswandi PU, Hartoyo H, Najib M. Attention, Interest, Search, Action, and Share (AISAS) Analysis of Promotion Effectiveness of Zomato. Binus Business Review. 2021; 12(2): 177-188. doi: 10.21512/bbr.v12i2.6676

46. Zhang C, Tan T. The Impact of Big Data Analysis on Consumer Behavior. Journal of Physics: Conference Series. 2020; 1544(1): 012165. doi: 10.1088/1742-6596/1544/1/012165

47. Ramadhani AD, Triyanto A, Muhammad IF. The Effect Of E-Marketing With Aisas Model (Attention , Interest, Search, Action , Share) On Investment Decisions In Fintech Syariah. JURNAL EKONOMI DAN PERBANKAN SYARIAH. 2020; 7(2): 47-57. doi: 10.46899/jeps.v7i2.114

48. L. van der Laan. The effect of selfie promotion and celebrity endorsed advertisement on decision-making processes: A model comparison. Emerald Publishing Limited. 2019.


DOI: https://doi.org/10.59429/esp.v9i7.2082
(326 Abstract Views, 86 PDF Downloads)

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Usep Suhud

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.