Published
2024-01-15
Issue
Section
Research Articles
License
The journal adopts the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0), which means that anyone can reuse and redistribute the materials for non-commercial purposes as long as you follow the license terms and the original source is properly cited.
Author(s) shall retain the copyright of their work and grant the Journal/Publisher rights for the first publication with the work concurrently licensed since 2023 Vol.8 No.2.
Under this license, author(s) will allow third parties to download, reuse, reprint, modify, distribute and/or copy the content under the condition that the authors are given credit. No permission is required from the authors or the publisher.
This broad license intends to facilitate free access, as well as the unrestricted use of original works of all types. This ensures that the published work is freely and openly available in perpetuity.
By providing open access, the following benefits are brought about:
- Higher Visibility, Availability and Citations-free and unlimited accessibility of the publication over the internet without any restrictions increases citation of the article.
- Ease of search-publications are easily searchable in search engines and indexing databases.
- Rapid Publication – accepted papers are immediately published online.
- Available for free download immediately after publication at https://esp.as-pub.com/index.php/ESP
Copyright Statement
1.The authors certify that the submitted manuscripts are original works, do not infringe the rights of others, are free from academic misconduct and confidentiality issues, and that there are no disputes over the authorship scheme of the collaborative articles. In case of infringement, academic misconduct and confidentiality issues, as well as disputes over the authorship scheme, all responsibilities will be borne by the authors.
2. The author agrees to grant the Editorial Office of Environment and Social Psychology a licence to use the reproduction right, distribution right, information network dissemination right, performance right, translation right, and compilation right of the submitted manuscript, including the work as a whole, as well as the diagrams, tables, abstracts, and any other parts that can be extracted from the work and used in accordance with the characteristics of the journal. The Editorial Board of Environment and Social Psychology has the right to use and sub-licence the above mentioned works for wide dissemination in print, electronic and online versions, and, in accordance with the characteristics of the periodical, for the period of legal protection of the property right of the copyright in the work, and for the territorial scope of the work throughout the world.
3. The authors are entitled to the copyright of their works under the relevant laws of Singapore, provided that they do not exercise their rights in a manner prejudicial to the interests of the Journal.
About Licence
Environment and Social Psychology is an open access journal and all published work is available under the Creative Commons Licence, Authors shall retain copyright of their work and grant the journal/publisher the right of first publication, and their work shall be licensed under the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
Under this licence, the author grants permission to third parties to download, reuse, reprint, modify, distribute and/or copy the content with attribution to the author. No permission from the author or publisher is required.
This broad licence is intended to facilitate free access to and unrestricted use of original works of all kinds. This ensures that published works remain free and accessible in perpetuity. Submitted manuscripts, once accepted, are immediately available to the public and permanently accessible free of charge on the journal’s official website (https://esp.as-pub.com/index.php/ESP). Allowing users to read, download, copy, print, search for or link to the full text of the article, or use it for other legal purposes. However, the use of the work must retain the author's signature, be limited to non-commercial purposes, and not be interpretative.
Click to download <Agreement on the Licence for the Use of Copyright on Environmental and Social Psychology>.
How to Cite
The shift from disease-centric to patient-centric healthcare: Assessing physicians’ intention to use AI doctors
Ali Osman Uymaz
Department of Human Resources Management, Faculty of Economics, Administrative, and Social Sciences, Alanya Alaaddin Keykubat University
Pelin Uymaz
Department of Nursing, Faculty of Health Sciences, Alanya Alaaddin Keykubat University
Yakup Akgül
Department of Business, Faculty of Economics, Administrative, and Social Sciences, Alanya Alaaddin Keykubat University
DOI: https://doi.org/10.54517/esp.v9i4.2308
Keywords: individual-centric healthcare, artificial intelligence, healthcare, prevention of diseases, PLS-SEM, artificial neural network
Abstract
This study examines physicians’ attitudes toward the intention to use AI doctors in healthcare. Currently, physicians use smart health technologies, health data, and AI in disease-focused research hospitals, and industry regulators hope that AI technology will be extensively used for each person, which means a shift from disease-centric to individual-centric healthcare. Using the theory of technology acceptance and use, a research model was developed to understand physicians’ intentions to use AI doctors for data collection, diagnosis, treatment planning, and patient follow-up. The causal comparison screening technique was used to determine the causes and consequences of physicians’ attitudes, behaviors, ideas, and beliefs. The responses of 478 physicians were evaluated using structural equation modeling and deep learning (an artificial neural network). It was discovered that physicians intend to use AI doctors first for diagnosis and treatment planning, and then for data collection and patient follow-up. According to the findings, the main constructs are performance expectancy, perceived task technology fit, high-tech habits, and hedonic motivation.
References
[1]. Bhattacharya S. Artificial intelligence, human intelligence, and the future of public health. AIMS Public Health. 2022, 9(4): 644-650. doi: 10.3934/publichealth.2022045
[2]. van Melle W. MYCIN: A knowledge-based consultation program for infectious disease diagnosis. International Journal of Man-Machine Studies. 1978, 10(3): 313-322. doi: 10.1016/s0020-7373(78)80049-2
[3]. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal. 2019, 6(2): 94-98. doi: 10.7861/futurehosp.6-2-94
[4]. Uymaz P, Uymaz AO, Akgül Y. Assessing the Behavioral Intention of Individuals to Use an AI Doctor at the Primary, Secondary, and Tertiary Care Levels. International Journal of Human–Computer Interaction. Published online July 17, 2023: 1-18. doi: 10.1080/10447318.2023.2233126
[5]. Arsalan, Owais, Mahmood, et al. Aiding the Diagnosis of Diabetic and Hypertensive Retinopathy Using Artificial Intelligence-Based Semantic Segmentation. Journal of Clinical Medicine. 2019, 8(9): 1446. doi: 10.3390/jcm8091446
[6]. Das A, Acharya UR, Panda SS, et al. Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques. Cognitive Systems Research. 2019, 54: 165-175. doi: 10.1016/j.cogsys.2018.12.009
[7]. Khan MA. An IoT Framework for Heart Disease Prediction Based on MDCNN Classifier. IEEE Access. 2020, 8: 34717-34727. doi: 10.1109/access.2020.2974687
[8]. Ljubic B, Roychoudhury S, Cao XH, et al. Influence of medical domain knowledge on deep learning for Alzheimer’s disease prediction. Computer Methods and Programs in Biomedicine. 2020, 197: 105765. doi: 10.1016/j.cmpb.2020.105765
[9]. Spann A, Yasodhara A, Kang J, et al. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review. Hepatology. 2020, 71(3): 1093-1105. doi: 10.1002/hep.31103
[10]. Woldaregay AZ, Årsand E, Botsis T, et al. Data-Driven Blood Glucose Pattern Classification and Anomalies Detection: Machine-Learning Applications in Type 1 Diabetes. Journal of Medical Internet Research. 2019, 21(5): e11030. doi: 10.2196/11030
[11]. Zaar O, Larson A, Polesie S, et al. Evaluation of the Diagnostic Accuracy of an Online Artificial Intelligence Application for Skin Disease Diagnosis. Acta Dermato Venereologica. 2020, 100(16): adv00260. doi: 10.2340/00015555-3624
[12]. World Health Organization. Recommendations on digital interventions for health system strengthening. Available online: https://www.who.int/publications/i/item/9789241550505 (accessed on 10 January 2024).
[13]. Ishii E, Ebner DK, Kimura S, et al. The advent of medical artificial intelligence: lessons from the Japanese approach. Journal of Intensive Care. 2020, 8(1). doi: 10.1186/s40560-020-00452-5
[14]. Lin SY, Mahoney MR, Sinsky CA. Ten Ways Artificial Intelligence Will Transform Primary Care. Journal of General Internal Medicine. 2019, 34(8): 1626-1630. doi: 10.1007/s11606-019-05035-1
[15]. US Department of Health and Human Services. Development of artificial intelligence (AI) tools to understand and duplicate experts’ radiation therapy planning for prostate cancer. Available online: https://www.sbir.gov/node/1308771 (accessed on 10 January 2024).
[16]. Jheng YC, Kao CL, Yarmishyn AA, et al. The era of artificial intelligence–based individualized telemedicine is coming. Journal of the Chinese Medical Association. 2020, 83(11): 981-983. doi: 10.1097/jcma.0000000000000374
[17]. Statista. Total amount of global healthcare data generated in 2013 and a projection for 2020. Avialable online: https://www.statista.com/statistics/1037970/global-healthcare-data-volume/ (accessed on 10 January 2024).
[18]. Yang Z, Silcox C, Sendak M, et al. Advancing primary care with Artificial Intelligence and Machine Learning. Healthcare. 2022, 10(1): 100594. doi: 10.1016/j.hjdsi.2021.100594
[19]. Yu C, Helwig EJ. The role of AI technology in prediction, diagnosis and treatment of colorectal cancer. Artificial Intelligence Review. 2021, 55(1): 323-343. doi: 10.1007/s10462-021-10034-y
[20]. Statista. Share of urban population worldwide in 2022, by continent. Available online: https://www.statista.com/statistics/270860/urbanization-by-continent/ (accessed on 10 January 2024).
[21]. Chen J, Chen C, B. Walther J, Sundar SS. Do you feel special when an AI doctor remembers you? individuation effects of AI vs. human doctors on user experience. In: Proceedings of CHI '21: CHI Conference on Human Factors in Computing Systems; 8–13 May 2021; Yokohama Japan. pp. 1-7. doi: 10.1145/3411763.3451735
[22]. Ergin E, Karaarslan D, Şahan S, et al. Artificial intelligence and robot nurses: From nurse managers’ perspective: A descriptive cross‐sectional study. Journal of Nursing Management. 2022, 30(8): 3853-3862. doi: 10.1111/jonm.13646
[23]. Sqalli MT, Al-Thani D. AI-supported health coaching model for patients with chronic diseases. In: Proceedings of the 2019 16th International Symposium on Wireless Communication Systems (ISWCS); 27–30 August 2019; Oulu, Finland. pp. 452-456. doi: 10.1109/iswcs.2019.8877113
[24]. Choudhury A, Asan O, Medow JE. Effect of risk, expectancy, and trust on clinicians’ intent to use an artificial intelligence system -- Blood Utilization Calculator. Applied Ergonomics. 2022, 101: 103708. doi: 10.1016/j.apergo.2022.103708
[25]. Guo J, Li B. The Application of Medical Artificial Intelligence Technology in Rural Areas of Developing Countries. Health Equity. 2018, 2(1): 174-181. doi: 10.1089/heq.2018.0037
[26]. Huo W, Yuan X, Li X, et al. Increasing acceptance of medical AI: The role of medical staff participation in AI development. International Journal of Medical Informatics. 2023, 175: 105073. doi: 10.1016/j.ijmedinf.2023.105073
[27]. Rai A, Keil M, Choi H, et al. Understanding how physician perceptions of job demand and process benefits evolve during CPOE implementation. Health Systems. 2022, 12(1): 98-122. doi: 10.1080/20476965.2022.2113343
[28]. Juravle G, Boudouraki A, Terziyska M, et al. Trust in artificial intelligence for medical diagnoses. Real-World Applications in Cognitive Neuroscience. Published online 2020: 263-282. doi: 10.1016/bs.pbr.2020.06.006
[29]. Yokoi R, Eguchi Y, Fujita T, et al. Artificial Intelligence Is Trusted Less than a Doctor in Medical Treatment Decisions: Influence of Perceived Care and Value Similarity. International Journal of Human–Computer Interaction. 2020, 37(10): 981-990. doi: 10.1080/10447318.2020.1861763
[30]. Armero W, Gray KJ, Fields KG, et al. A survey of pregnant patients’ perspectives on the implementation of artificial intelligence in clinical care. Journal of the American Medical Informatics Association. 2022, 30(1): 46-53. doi: 10.1093/jamia/ocac200
[31]. Fritsch SJ, Blankenheim A, Wahl A, et al. Attitudes and perception of artificial intelligence in healthcare: A cross-sectional survey among patients. Digital Health. 2022, 8: 205520762211167. doi: 10.1177/20552076221116772
[32]. Frank DA, Elbæk CT, Børsting CK, et al. Drivers and social implications of Artificial Intelligence adoption in healthcare during the COVID-19 pandemic. PLoS ONE. 2021, 16(11): e0259928. doi: 10.1371/journal.pone.0259928
[33]. Liu CF, Chen ZC, Kuo SC, et al. Does AI explainability affect physicians’ intention to use AI? International Journal of Medical Informatics. 2022, 168: 104884. doi: 10.1016/j.ijmedinf.2022.104884
[34]. Baysal AC. Attitude. In: Baysal AC, Tekarslan E (editors). Behavioral Science, 4th ed. Avciol; 2004. pp. 299-342.
[35]. Hu J, Liang W, Hosam O, et al. 5GSS: A framework for 5G-secure-smart healthcare monitoring. Connection Science. 2021, 34(1): 139-161. doi: 10.1080/09540091.2021.1977243
[36]. Kueper JK, Terry AL, Zwarenstein M, et al. Artificial Intelligence and Primary Care Research: A Scoping Review. The Annals of Family Medicine. 2020, 18(3): 250-258. doi: 10.1370/afm.2518
[37]. Stone PW, Teutsch S, Chapman RH, Bell C, Goldie SJ, Neumann PJ. Cost-utility analyses of clinical preventive services: published ratios, 1976–1997. American journal of preventive medicine. 2000 Jul 1;19(1):15-23. doi: 10.1016/S0749-3797(00)00151-3
[38]. Zhao Y, Li S, Chen H, et al. Application of Smart City Construction in a New Data Environment. Frontiers in Energy Research. 2022, 10. doi: 10.3389/fenrg.2022.908338
[39]. Srivastava SK. Smart meter for smart homes. In: Proceedings of the 2019 International Conference on Big Data Engineering; 11–13 June 2019; New York, NY, United States. pp. 74-78. doi: 10.1145/3341620.3341621
[40]. Liu L, Stroulia E, Nikolaidis I, et al. Smart homes and home health monitoring technologies for older adults: A systematic review. International Journal of Medical Informatics. 2016, 91: 44-59. doi: 10.1016/j.ijmedinf.2016.04.007
[41]. Pasli S, Imamoglu M. Smart watch detected ventricular bigeminy during chest palpitations. The American Journal of Emergency Medicine. 2023, 69: 220.e1-220.e3. doi: 10.1016/j.ajem.2023.02.018
[42]. Mitrasinovic S, Camacho E, Trivedi N, et al. Clinical and surgical applications of smart glasses. Technology and Health Care. 2015, 23(4): 381-401. doi: 10.3233/thc-150910
[43]. Gokalgandhi D, Kamdar L, Shah N, et al. A Review of Smart Technologies Embedded in Shoes. Journal of Medical Systems. 2020, 44(9). doi: 10.1007/s10916-020-01613-7
[44]. Wang H, Dauwed M, Khan I, et al. MEC-IoT-Healthcare: Analysis and Prospects. Computers, Materials & Continua. 2023, 75(3): 6219-6250. doi: 10.32604/cmc.2022.030958
[45]. Liu YX, Zhu C, Wu ZX, et al. A bibliometric analysis of the application of artificial intelligence to advance individualized diagnosis and treatment of critical illness. Annals of Translational Medicine. 2022, 10(16): 854-854. doi: 10.21037/atm-22-913
[46]. Huang K, Jiao Z, Cai Y, et al. Artificial intelligence‐based intelligent surveillance for reducing nurses’ working hours in nurse–patient interaction: A two‐wave study. Journal of Nursing Management. 2022, 30(8): 3817-3826. doi: 10.1111/jonm.13787
[47]. Ingram K. Constructing AI: Examining how AI is shaped by data, models and people. The International Review of Information Ethics. 2021, 29. doi: 10.29173/irie415
[48]. Müller S. Is there a civic duty to support medical AI development by sharing electronic health records? BMC Medical Ethics. 2022, 23(1). doi: 10.1186/s12910-022-00871-z
[49]. National Cancer Institute. Diagnosis. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/diagnosis (accessed on 21 February 2023).
[50]. Chui K, Alhalabi W, Pang S, et al. Disease Diagnosis in Smart Healthcare: Innovation, Technologies and Applications. Sustainability. 2017, 9(12): 2309. doi: 10.3390/su9122309
[51]. O’Connell GC, Chantler PD, Barr TL. Stroke-associated pattern of gene expression previously identified by machine-learning is diagnostically robust in an independent patient population. Genomics Data. 2017, 14: 47-52. doi: 10.1016/j.gdata.2017.08.006
[52]. Yun JH, Lee E, Kim DH. Behavioral and neural evidence on consumer responses to human doctors and medical artificial intelligence. Psychology & Marketing. 2021, 38(4): 610-625. doi: 10.1002/mar.21445
[53]. Longoni C, Bonezzi A, Morewedge CK. Resistance to Medical Artificial Intelligence. Journal of Consumer Research. 2019, 46(4): 629-650. doi: 10.1093/jcr/ucz013
[54]. United Nations. What is Treatment? Available online: https://www.unodc.org/pdf/26june04/event_2004-06-26_general.pdf (accessed on 21 February 2023).
[55]. Jiang S, Xue Y, Li M, et al. Artificial Intelligence-Based Automated Treatment Planning of Postmastectomy Volumetric Modulated Arc Radiotherapy. Frontiers in Oncology. 2022, 12. doi: 10.3389/fonc.2022.871871
[56]. van de Sande D, Sharabiani M, Bluemink H, et al. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Physics and Imaging in Radiation Oncology. 2021, 20: 111-116. doi: 10.1016/j.phro.2021.11.007
[57]. Wang C, Zhu X, Hong JC, et al. Artificial Intelligence in Radiotherapy Treatment Planning: Present and Future. Technology in Cancer Research & Treatment. 2019, 18: 153303381987392. doi: 10.1177/1533033819873922
[58]. Nguyen D, Ngo B, vanSonnenberg E. AI in the Intensive Care Unit: Up-to-Date Review. Journal of Intensive Care Medicine. 2020, 36(10): 1115-1123. doi: 10.1177/0885066620956620
[59]. Sanchez-Pinsach D, Mulayim MO, Grau-Sanchez J, et al. Design of an AI platform to support home-based self-training music interventions for chronic stroke patients. In: Sabater-Mir J, Torra V, Aguilo I, GonzalezHidalgo M (editors). Artificial Intelligence Research And Development. IOS Press; 2019. pp. 170-175. doi: 10.3233/FAIA190120
[60]. Statista. Proportion of selected age groups of world population and in regions in 2023. Available online: https://www.statista.com/statistics/265759/world-population-by-age-and-region/ (accessed on 10 January 2024).
[61]. Holman HR. The Relation of the Chronic Disease Epidemic to the Health Care Crisis. ACR Open Rheumatology. 2020, 2(3): 167-173. doi: 10.1002/acr2.11114
[62]. Yach D, Leeder SR, Bell J, et al. Global Chronic Diseases. Science. 2005, 307(5708): 317-317. doi: 10.1126/science.1108656
[63]. World Health Organization. Noncommunicable diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 10 January 2024).
[64]. Feuerstein JD, Miller S, Ladonne M, et al. S307 Artificial Intelligence Identifies High Risk Patients Lost to Colon Cancer Screening Follow-Up During COVID-19 Pandemic. American Journal of Gastroenterology. 2022, 117(10S): e221-e221. doi: 10.14309/01.ajg.0000857868.62929.a2
[65]. Niel O, Bastard P. Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. American Journal of Kidney Diseases. 2019, 74(6): 803-810. doi: 10.1053/j.ajkd.2019.05.020
[66]. Ribeiro JM, Astudillo P, de Backer O, et al. Artificial Intelligence and Transcatheter Interventions for Structural Heart Disease: A glance at the (near) future. Trends in Cardiovascular Medicine. 2022, 32(3): 153-159. doi: 10.1016/j.tcm.2021.02.002
[67]. Torrente M, Franco F, Calvo V, et al. P08.01 Building Personalized Follow-Up Care Through AI by Bringing the Lung Cancer Patient, Data Scientist and Oncologist Together. Journal of Thoracic Oncology. 2021, 16(10): S991-S992. doi: 10.1016/j.jtho.2021.08.294
[68]. Coco K, Kangasniemi M, Rantanen T. Care Personnel’s Attitudes and Fears Toward Care Robots in Elderly Care: A Comparison of Data from the Care Personnel in Finland and Japan. Journal of Nursing Scholarship. 2018, 50(6): 634-644. doi: 10.1111/jnu.12435
[69]. Zager Kocjan G, Špes T, Svetina M, et al. Assistive digital technology to promote quality of life and independent living for older adults through improved self-regulation: a scoping review. Behaviour & Information Technology. 2022, 42(16): 2832-2851. doi: 10.1080/0144929x.2022.2149423
[70]. Cruz-Martínez RR, Wentzel J, Sanderman R, et al. Tailoring eHealth design to support the self-care needs of patients with cardiovascular diseases: a vignette survey experiment. Behaviour & Information Technology. 2021, 41(14): 3065-3086. doi: 10.1080/0144929x.2021.1971764
[71]. Mrozovski JM, de Chalain A. L’intelligence artificielle au service du patient de l’officine. Actualités Pharmaceutiques. 2021, 60(611): 28-29. doi: 10.1016/j.actpha.2021.10.008
[72]. Venkatesh, Thong, Xu. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly. 2012, 36(1): 157. doi: 10.2307/41410412
[73]. Goodhue DL, Thompson RL. Task-Technology Fit and Individual Performance. MIS Quarterly. 1995, 19(2): 213. doi: 10.2307/249689
[74]. Baumeister RF, Vohs KD, Funder DC. Psychology as the Science of Self-Reports and Finger Movements: Whatever Happened to Actual Behavior? Perspectives on Psychological Science. 2007, 2(4): 396-403. doi: 10.1111/j.1745-6916.2007.00051.x
[75]. Doliński D. Is Psychology Still a Science of Behaviour? Social Psychological Bulletin. 2018, 13(2): e25025. doi: 10.5964/spb.v13i2.25025
[76]. Sheeran P, Webb TL. The Intention–Behavior Gap. Social and Personality Psychology Compass. 2016, 10(9): 503-518. doi: 10.1111/spc3.12265
[77]. Loebnitz N, Frank P, Otterbring T. Stairway to organic heaven: The impact of social and temporal distance in print ads. Journal of Business Research. 2022, 139: 1044-1057. doi: 10.1016/j.jbusres.2021.10.020
[78]. Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology. Nature Reviews Cancer. 2018, 18(8): 500-510. doi: 10.1038/s41568-018-0016-5
[79]. Davis FD. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly. 1989, 13(3): 319. doi: 10.2307/249008
[80]. Venkatesh V, Davis FD. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science. 2000, 46(2): 186-204. doi: 10.1287/mnsc.46.2.186.11926
[81]. Jha N, Shankar PR, Al-Betar MA, et al. Undergraduate Medical Students’ and Interns’ Knowledge and Perception of Artificial Intelligence in Medicine. Advances in Medical Education and Practice. 2022, 13: 927-937. doi: 10.2147/amep.s368519
[82]. Fishbein MA, Ajzen I. Belief, attitude, intention and behaviour: An introduction to theory and research. Addison-Wesley; 1975.
[83]. Venkatesh, Morris, Davis, et al. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly. 2003, 27(3): 425. doi: 10.2307/30036540
[84]. Uymaz P, Uymaz AO. Assessing acceptance of augmented reality in nursing education. PLoS ONE. 2022, 17(2): e0263937. doi: 10.1371/journal.pone.0263937
[85]. Zhu Y, Zhao Z, Guo J, et al. Understanding Use Intention of mHealth Applications Based on the Unified Theory of Acceptance and Use of Technology 2 (UTAUT-2) Model in China. International Journal of Environmental Research and Public Health. 2023, 20(4): 3139. doi: 10.3390/ijerph20043139
[86]. Venkatesh V, Thong J, Xu X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems. 2016, 17(5): 328-376. doi: 10.17705/1jais.00428
[87]. Laursen MS, Pedersen JS, Just SA, et al. Factors facilitating the acceptance of diagnostic robots in healthcare: A survey. In: Proceedings of the 2022 IEEE 10th International Conference on Healthcare Informatics, ICHI 2022. 11–14 June 2022; Rochester, USA. pp. 442-448. doi: 10.1109/ichi54592.2022.00066
[88]. Christensen L, Johnson R, Turner L. Research Methods, Design, and Analysis. Pearson; 2014.
[89]. Hair JF, Hult GT, Ringle CM, Sarstedt M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed. Sage Publication; 2017.
[90]. Podsakoff PM, MacKenzie SB, Podsakoff NP. Sources of Method Bias in Social Science Research and Recommendations on How to Control It. Annual Review of Psychology. 2012, 63(1): 539-569. doi: 10.1146/annurev-psych-120710-100452
[91]. Sharma, Yetton, Crawford. Estimating the Effect of Common Method Variance: The Method—Method Pair Technique with an Illustration from TAM Research. MIS Quarterly. 2009, 33(3): 473. doi: 10.2307/20650305
[92]. Garson GD. Partial Least Squares: Regression & Structual Equation Models. Statistical Associates Publishers; 2016.
[93]. Haykin S. Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall; 1999.
[94]. Chong AYL. A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Systems with Applications. 2013, 40(4): 1240-1247. doi: 10.1016/j.eswa.2012.08.067
[95]. Sharma SK, Sharma H, Dwivedi YK. A Hybrid SEM-Neural Network Model for Predicting Determinants of Mobile Payment Services. Information Systems Management. 2019, 36(3): 243-261. doi: 10.1080/10580530.2019.1620504
[96]. Akgül Y, Uymaz AO. Facebook/Meta usage in higher education: A deep learning-based dual-stage SEM-ANN analysis. Education and Information Technologies. 2022, 27(7): 9821-9855. doi: 10.1007/s10639-022-11012-9
[97]. Statista. Health expenditure as a percentage of gross domestic product (GDP) in selected countries in 2022. Available online: https://www.statista.com/statistics/268826/health-expenditure-as-gdp-percentage-in-oecd-countries/ (accessed on 10 January 2024).
[98]. Landi H. Nearly half of U.S. doctors say they are anxious about using AI-powered software: Survey. Available online: https://www.fiercehealthcare.com/practices/nearly-half-u-s-doctors-say-they-are-anxious-about-using-ai-powered-software-survey (accessed on 10 January 2024).
[99]. Meyer J, Khademi A, Têtu B, et al. Impact of artificial intelligence on pathologists’ decisions: an experiment. Journal of the American Medical Informatics Association. 2022, 29(10): 1688-1695. doi: 10.1093/jamia/ocac103
[100]. Chandra Y, Shang L, Roy MJ. Understanding Healthcare Social Enterprises: A New Public Governance Perspective. Journal of Social Policy. 2021, 51(4): 834-855. doi: 10.1017/s0047279421000222
[101]. Rho MJ, Choi IY. The different perception on telemedicine service between public health users and private health users. In: Proceedings of the 2013 International Conference on Information Science and Applications (ICISA); 24–26 June 2013; Pattaya, Thailand. pp. 1-2. doi: 10.1109/ICISA.2013.6579354
[102]. Rho MJ, Yoon KH, Kim HS, et al. Users’ perception on telemedicine service: a comparative study of public healthcare and private healthcare. Multimedia Tools and Applications. 2014, 74(7): 2483-2497. doi: 10.1007/s11042-014-1966-6
[103]. Sumaedi S, Yuda Bakti IGM, Rakhmawati T, et al. Indonesian public healthcare service institution’s patient satisfaction barometer (IPHSI-PSB). International Journal of Productivity and Performance Management. 2016, 65(1): 25-41. doi: 10.1108/ijppm-07-2014-0112
[104]. Addo AA, Wang W, Dankyi AB, et al. The Mediating Role of Patient Satisfaction in the Relationship between Quality of Doctor Services and Patient Loyalty: Empirical Evidence from the Health Sector of Ghana. Saudi Journal of Business and Management Studies. 2020, 05(02): 154-163. doi: 10.36348/sjbms.2020.v05i02.007
[105]. Berger R, Bulmash B, Drori N, et al. The patient–physician relationship: an account of the physician’s perspective. Israel Journal of Health Policy Research. 2020, 9(1). doi: 10.1186/s13584-020-00375-4